--> --> -->

Blogs

24
Jun 2024

Innovative Technologies Revolutionizing Quality Control in Biological Products

Innovative Technologies Revolutionizing Quality Control in Biological Products

The biopharmaceutical industry is witnessing a paradigm shift in quality control practices, driven by the emergence of innovative technologies. As the demand for biological products continues to rise, ensuring their safety, efficacy, and consistency has become increasingly complex. Traditional quality control methods are often inadequate in addressing the unique challenges posed by biologics manufacturing.

However, advancements in technology offer promising solutions to these challenges, revolutionizing the way quality control is conducted in the biopharmaceutical sector. From novel analytical tools to sophisticated data analytics and automation, these innovative technologies are reshaping the landscape of quality assurance.

This blog delves into the transformative impact of these advanced, cutting-edge technologies on quality control in biological products. By enhancing detection sensitivity, accelerating testing processes, and enabling real-time monitoring, these innovations are poised to elevate the standards of quality assurance and ensure the delivery of safe and effective biopharmaceuticals to patients worldwide.

CCI Techniques for Biological Products Quality Control

1. Vacuum Decay Technology

Vacuum Decay technology, being recognized by the FDA, is a leak detection method ideal for Container Closure Integrity (CCI) testing in high-risk package applications. This non-destructive technique enhances package analysis and minimizes waste. It is highly sensitive in detecting leaks in sealed packaging, whether rigid, semi-rigid, flexible, or made from non-porous or porous materials. The technology consistently delivers repeatable, reliable, and quantitative test results. Vacuum Decay technology is widely recognized as a non-destructive alternative to the water bath leak test and dye ingress test.

In this method, packages are placed in a well-fitted evacuation test chamber connected to an external vacuum source. Utilizing single or dual vacuum transducer technology, the vacuum level and changes in the vacuum are monitored over a predetermined test period. Variations in absolute and differential vacuum indicate leaks and defects within the package. If a package is defective, air escapes through the leak into the test chamber. Non-defective packages retain the air, maintaining a constant chamber vacuum level.

2. MicroCurrent HVLD Technology

MicroCurrent HVLD technology is a non-destructive method that sends high-voltage current signals through packages. This method is recognized in USP 1207 as a deterministic test method. It is a practical solution for a wide range of liquid-filled parenteral products, including vials, ampoules, drug product cartridges, and pre-filled syringes. HVLD is unique among leak detection technologies as it does not require mass to pass through a defect site; it only requires electricity to pass through a crack. This feature makes HVLD highly sensitive to leaks that other test solutions cannot detect.

The technology relies on the basic principle of quantitative electrical conductivity measurements. In this method, the container is placed horizontally on a rotating stage. During rotation, high voltage and ground probes are applied to opposite sides of the container. If the package is defect-free, the container walls offer complete electrical resistance, and no current is detected passing through. If the package is defective, the resistance breaks down, allowing current to pass through.

Innovative technologies have ushered in a new era of quality control for biological products, significantly transforming the landscape of the biopharmaceutical industry. Through advancements in analytical techniques, automation, and data analytics, these technologies have revolutionized how quality assurance is conducted, ensuring the safety, efficacy, and consistency of biological products.

Overall, the integration of innovative technologies into quality control processes for biological products holds great promise for improving healthcare outcomes and driving the development of novel therapies to benefit patients worldwide.

microcurrent hvld, vacuum decay technology, non-destructive methods
295
Popup Popup