--> --> -->

Blogs

17
Sep 2024

USP <382> and Its Impact on Pharmaceutical Packaging: What You Need to Know?

USP <382> and Its Impact on Pharmaceutical Packaging: What You Need to Know?

As the pharmaceutical industry continues to advance, the need for stringent packaging standards becomes increasingly critical. USP <382> has emerged as a pivotal guideline, specifically addressing the functional suitability of elastomeric components used in injectable drug packaging. These components, including stoppers, seals, and plungers, play a vital role in ensuring the sterility, safety, and efficacy of drug products throughout their lifecycle.

USP <382> sets forth comprehensive testing protocols to evaluate these components, influencing how pharmaceutical packaging is developed and validated. For manufacturers, understanding and adhering to this standard is not just about regulatory compliance - it's about safeguarding patient health by ensuring every aspect of the packaging performs to the highest standards.

USP <382>: An Overview

USP <382>, titled "Elastomeric Component Functional Suitability in Parenteral Product Packaging/Delivery Systems," is a chapter within the United States Pharmacopeia (USP) that establishes guidelines for testing the functional suitability of elastomeric components like stoppers, seals, and plungers. These components are essential in packaging systems for parenteral (injectable) drugs, as they ensure the drug product's sterility, stability, and delivery.

The chapter outlines rigorous testing protocols that elastomeric components must undergo to verify their safety and performance. These tests include evaluations for container closure integrity (CCI), extractables and leachables, and the components' ability to maintain functionality under various conditions.

Impact of USP <382> on Pharmaceutical Packaging

USP <382> significantly influences how pharmaceutical packaging is developed, tested, and validated. Its impact includes:

  • Stricter Testing Protocols: Manufacturers must conduct comprehensive testing of elastomeric components to meet USP <382> standards. This often involves advanced methods for assessing container closure integrity, such as vacuum decay leak testing, to detect even the smallest leaks that could compromise the product.
  • Increased Focus on Extractables and Leachables: The standard emphasizes the importance of testing for extractables and leachables, which are chemicals that can migrate from the packaging materials into the drug product. Ensuring these substances are within acceptable limits is crucial for patient safety.
  • Enhanced Component Selection: USP <382> encourages manufacturers to carefully select materials and components that meet the stringent requirements of the standard. This leads to the development of packaging systems that are better suited to protect the drug product over its entire shelf life.

USP <382> is more than just a regulatory standard - it is a cornerstone of modern pharmaceutical packaging, ensuring that every elastomeric component used in injectable products meets the highest levels of safety and performance. By implementing the guidelines set forth in USP <382>, pharmaceutical companies not only comply with industry regulations but also demonstrate their commitment to patient safety and product integrity.

As the pharmaceutical landscape continues to innovate, the importance of robust packaging standards like USP <382> will only grow. Embracing these standards allows manufacturers to build confidence in their products, reduce the risk of contamination or failure, and ultimately deliver safe, reliable treatments that patients and healthcare providers can trust. Understanding and applying USP <382> is essential for any company aiming to lead in quality and patient care in an increasingly complex and demanding industry.

Readmore...
usp 382, vacuum decay leak testing, ccit
216
29
Jul 2024

Benefits of Using Vacuum Decay Technology for Ensuring Vial Integrity

Benefits of Using Vacuum Decay Technology for Ensuring Vial Integrity

In the pharmaceutical industry, ensuring the integrity of vial is paramount for maintaining the sterility, efficacy, and safety of drug products. Traditional methods such as bubble emission, dye ingress, and microbial ingress have been used for years to test vial integrity. However, these methods often fall short in sensitivity, efficiency, and reliability. Vacuum decay testing has emerged as a superior alternative, offering numerous advantages that make it the preferred choice for container closure integrity testing. This method not only meets stringent regulatory requirements but also provides enhanced sensitivity, non-destructive testing capabilities, and operational efficiency, making it a vital tool in the pharmaceutical quality assurance process.

Vial Integrity Importance in Pharmaceuticals

Vial integrity is crucial in the pharmaceutical industry for several reasons:

  • Product Safety: Ensuring the vial's integrity means the contents remain sterile and uncontaminated. Any breach can lead to contamination, which poses significant health risks to patients.
  • Efficacy: The integrity of a vial ensures that the medication remains effective. Contaminants can degrade the drug, reducing its efficacy and making it less effective or even harmful.
  • Regulatory Compliance: Regulatory bodies like the FDA have strict guidelines regarding the packaging and integrity of pharmaceutical products. Non-compliance can lead to recalls, legal issues, and loss of consumer trust.
  • Shelf Life: A properly sealed vial protects the drug from environmental factors such as light, air, and moisture, which can affect its stability and shelf life.
  • Cost Efficiency: Maintaining vial integrity reduces the risk of product loss due to contamination or degradation, which can be costly for pharmaceutical companies.

Why is Vacuum Decay Preferred Over Traditional Methods?

Vacuum decay is a non-destructive container closure integrity testing (CCIT) method used to detect leak and ensure package integrity. The test method is simple in principle and challenges container integrity based on fundamental physical properties. It provides accurate, repeatable, reproducible, and reliable quantitative results with a clear pass/fail determination. Referenced in the United States Pharmacopeia Chapter on CCI and listed in ISO 11607 (USP Chapter 1207), this test is conducted by drawing a vacuum on a package inside a test chamber and checking for any decay in the vacuum level, which would indicate a leak. This technique has become a preferred non-destructive alternative to the dye ingress test, preventing product waste and offering significant cost savings. For many products, it achieves a return on investment in less than six months.

Benefits of Vacuum Decay Technology

  • Non-destructive, non-subjective, no sample preparation
  • Defect detection down to 0.01 cc/min
  • Results have proven superior to dye ingress
  • Deterministic, quantitative test method
  • Supports sustainable packaging and zero waste initiatives
  • ASTM test method and FDA standard

Vacuum decay leak testing stands out as a premier method for ensuring vial integrity in the pharmaceutical industry. Its non-destructive nature preserves product viability while providing highly sensitive and accurate leak detection. The method’s ability to deliver consistent and repeatable results enhances quality assurance processes and regulatory compliance. Moreover, the efficiency and speed of Vacuum decay testing contribute to cost savings and operational efficiency, offering a rapid return on investment. By integrating Vacuum decay technology into their quality control systems, pharmaceutical companies can achieve superior product safety, efficacy, and reliability, ultimately ensuring the highest standards of patient care.

Readmore...
vacuum decay leak testing, ccit, cci technologies
232
03
Jul 2024

The Importance of Integrity Testing of Contact Lenses

The Importance of Integrity Testing of Contact Lenses

Non-destructive testing (NDT) plays a pivotal role in ensuring the quality and reliability of various products across industries. In the realm of contact lens manufacturing, where precision and safety are paramount, the VeriPac system stands out as a game-changer. This innovative technology revolutionizes the quality control process by offering a non-invasive means to inspect and validate contact lenses without compromising their integrity.

The VeriPac system employs advanced inspection techniques that eliminate the need for destructive testing methods, preserving the integrity of each lens while providing comprehensive analysis. By utilizing non-destructive methods such as Vacuum Decay technology, the VeriPac system can detect even the slightest defects or irregularities in contact lenses, ensuring that only products meeting the highest standards are delivered to consumers.

Challenges in Contact Lens Manufacturing

Contact lens manufacturing involves intricate processes to ensure the production of high-quality lenses that are safe and comfortable for wearers. Here are some of the challenges faced in contact lens manufacturing:

  • Material Selection: Choosing the right material is crucial. It needs to be biocompatible, allowing oxygen transmission to the cornea, and have appropriate mechanical properties to ensure comfort and durability.
  • Sterilization: Ensuring lenses are free from contaminants and microorganisms is essential to prevent eye infections. Sterilization methods must be effective without altering the properties of the lens material.
  • Quality Control: Maintaining consistent quality across batches is challenging. Quality control measures are necessary at every stage of production to identify and rectify any defects.
  • Regulatory Compliance: Contact lenses are medical devices, so manufacturers must comply with strict regulatory standards set by organizations such as the FDA in the US and the CE in Europe.
  • Cost-Efficiency: Balancing quality and cost is a constant challenge. Manufacturers need to invest in advanced technologies while keeping the production cost-effective to remain competitive.
  • Environmental Impact: With increased awareness of sustainability, manufacturers face pressure to develop eco-friendly materials and reduce waste generated during production.

Role of VeriPac System in Enhancing Contact Lens Manufacturing

VeriPac 410 is an innovative Container Closure Integrity Testing (CCIT) method, that uses force decay technology for non-destructive seal and leak detection for contact lenses. VeriPac 410 inspection technology platform integrates Vacuum Decay technology with a new force-based measurement system for enhanced performance. This advanced force decay technology can measure force by detecting the surface deflection of a package during a standard vacuum test cycle. By measuring the surface force of the package, the VeriPac 410 can not only identify defective packages but also perform leak tests on packages with minimal headspace.

The ability to inspect multiple packages in a single test cycle is one of the key features of VeriPac 410 technology. This capability streamlines evaluations, facilitating a faster processing rate for products. Furthermore, the system is engineered to identify the exact defective package or blister cavity, offering precise data to operators and quality control teams. The test results are quantitative, delivering a definitive PASS/FAIL determination. This eliminates any subjective interpretation from the evaluation process, thereby improving the dependability and precision of quality control measures.

Benefits of VeriPac 410 Technology

  • Non-destructive, non-invasive, no sample preparation
  • Non-subjective, accurate, and repeatable results
  • Capability to test multiple packages in a single test cycle
  • Identifies which package is defective
  • Simplifies the inspection and validation process
  • ASTM test method and FDA standard
  • Cost-effective with rapid return on investment

As contact lens manufacturing continues to evolve, the VeriPac system stands as a testament to the power of technology in driving progress and innovation. Its impact extends beyond the manufacturing floor, influencing the standards of quality assurance and setting new benchmarks for excellence in product inspection. With its proven track record of reliability and precision, the VeriPac system remains an indispensable tool for ensuring the quality and safety of contact lenses, ultimately enhancing the overall experience for consumers worldwide.

Readmore...
non destructive testing, container closure integrity, container closure integrity testing, ccit, cci technologies
263
06
Feb 2024

Safeguarding Quality - Evaluating Container Closure Integrity in High-Risk Pharma

Safeguarding Quality - Evaluating Container Closure Integrity in High-Risk Pharma

High-risk pharmaceutical products refer to medications and substances that, due to their nature or intended use, pose a higher level of risk to patients and the public. These products often include injectable drugs, biologics, vaccines, and other sensitive formulations that require stringent quality control measures to ensure patient safety and regulatory compliance.

The packaging of high-risk pharmaceutical products presents unique challenges due to the need for exceptional product protection, stability, and, most importantly, containment of the product to prevent contamination. As these products are often administered directly into the body, maintaining the integrity of the container closure system is critical to prevent microbial ingress, oxygen exposure, and other factors that could compromise the drug's efficacy and safety.

Container Closure Integrity (CCI) testing is a vital process within the pharmaceutical industry to verify that the packaging of a product effectively prevents any leakage or contamination. This testing is crucial in ensuring that the pharmaceutical product maintains its integrity throughout its shelf life, safeguarding patient safety and therapeutic efficacy.

MicroCurrent HVLD Technolgy for Testing Integrity of High-Risk Pharma

PTI's MicroCurrent HVLD technology represents a non-destructive and non-invasive approach to testing the container closure integrity (CCI) of various liquid-filled products, including pre-filled syringes, vials, cartridges, ampoules, blow-fill-seal (BFS) containers, bottles, and pouches. This method has proven to be highly effective in ensuring the integrity of container closures in diverse applications.

The technology employs electrode probes to scan sealed containers, aiming to detect any potential leaks. By analyzing changes in the current flow, both the existence of defects in the container and their approximate locations can be identified with precision. This makes the MicroCurrent HVLD technology particularly versatile, capable of detecting leaks in a wide range of liquid-filled products, even those with extremely low conductivity, such as sterile water for injection (WFI) and proteinaceous products with suspensions.

One notable advantage of MicroCurrent HVLD is its efficiency in terms of voltage usage. It utilizes approximately 50% less voltage compared to conventional HVLD solutions, contributing to a more energy-efficient and environmentally friendly testing process. Moreover, the reduced voltage exposure (less than 5% compared to traditional methods) minimizes potential risks to both the product and the testing environment.

Benefits of MicroCurrent HVLD:

  • Deterministic, non-destructive, non-invasive, non-subjective
  • High level of repeatability and accuracy
  • Ideal package integrity solution for liquid filled parenteral products
  • Low voltage exposure to the product and environment
  • Offline and automated online inspection
  • Referenced in USP 1207 guideline
Readmore...
ccit, container closure integrity testing, hvld, microcurrent hvld, usp 1207, hvld technology
653
19
Jan 2024

VeriPac Series for Class III Medical Device Package Inspection

VeriPac Series for Class III Medical Device Package Inspection

Class III medical devices in the United States are subject to stringent regulation by the Food and Drug Administration (FDA) under the Federal Food, Drug, and Cosmetic Act. These devices, characterized by their high-risk nature, include those vital to sustaining human life or preventing health impairment, as well as those posing potential, unreasonable risks of illness or injury.

Examples of Class III devices encompass implantable pacemakers, specific prosthetic devices, and innovative technologies such as certain in vitro diagnostic devices. Classification is determined by factors like intended use, indications, and associated risks. Due to their complexity and critical roles in medical procedures, Class III devices undergo a rigorous pre-market approval (PMA) process.

Manufacturers must furnish extensive scientific and clinical evidence to demonstrate a device's safety and efficacy before it can be marketed. This robust regulatory framework ensures that Class III medical devices meet the highest standards for safety and performance, safeguarding patient health.

Packaging for these devices plays a critical role in maintaining the integrity of the product, ensuring it reaches the end user in a safe and effective condition. The packaging of Class III medical devices faces unique challenges due to the stringent regulatory requirements and the critical nature of the enclosed products. Ensuring the integrity of the packaging is essential to prevent contamination, maintain sterility, and safeguard the efficacy of the medical devices.

How to Ensure Container Closure Integrity of Class III Medical Device Packaging

Container Closure Integrity (CCI) is a vital aspect of ensuring the reliability of Class III medical device packaging . CCI testing involves assessing the seals and closures to confirm they effectively prevent the ingress of contaminants and maintain the sterility of the device. This testing is crucial to meeting regulatory standards and ensuring patient safety.

PTI’s VeriPac series are non-destructive, non-invasive inspection systems for leak detection and package integrity testing. These systems reduce waste and provide operators with a clear understanding of package quality. The VeriPac test system produces real time results from precise quantitative measurements that identify packaging defects before critical process issues get out of control. Tests can be performed in any sequence and even repeatedly on a single sample. Good packages can be returned undamaged to the packaging line. Testing is more reliable, sensitive and efficient than destructive methods. VeriPac series utilizes the ASTM approved patented Vacuum Decay leak test method F2338, recognized by the FDA as a consensus standard for package integrity testing.

Technology Overview

PTI’s VeriPac leak testers connect to a test chamber that is specially designed to contain the package to be tested. The package is placed inside the test chamber to which vacuum is applied. The absolute transducer technology is used to monitor the test chamber for both, the level of vacuum as well as the change in vacuum over a predetermined test time. The changes in absolute and differential vacuum indicate the presence of leaks and defects within the package. The test cycle takes only a few seconds, results are non-subjective, and testing is non-destructive to both product and package. The sensitivity of a test is a function of the sensitivity of the transducer, the package design, the package test fixture and critical test parameters of time and pressure. Test systems can be designed for manual or fully automated operation. This inspection method is suitable for laboratory offline testing, QA/QC statistical process control, automated batch or 100% inline testing.

Benefits of VeriPac series

  • Non-destructive, non-subjective, no sample preparation
  • Deterministic, quantitative test method
  • Defect detection down to single digit microns.
  • High level of sensitivity, repeatability and accuracy
  • Short cycle time provides operator with PASS/FAIL result
  • Small footprint and modular portable design
  • ASTM test method and FDA standard
  • Referenced in USP 1207 guidance
Readmore...
VeriPac Series, Class III Medical Device Package Inspection, cci, container closure integrity, ccit, cci testing
820
15
Jan 2024

How can Force Decay Technology Help Ensure Integrity of Low Head Space Packages

How can Force Decay Technology Help Ensure Integrity of Low Head Space Packages

Low head space packages are a common type of packaging used for a variety of products, including pharmaceuticals, medical devices, and food. These packages are designed to have a minimal amount of space between the product and the packaging material, which can help extend the shelf life of the product and protect it from contamination. Low head space packages are typically made of a flexible material, such as film or foil. The material is then sealed to the product, creating a tight seal that helps to preserve the product's integrity.

However, low head space packages can also be more susceptible to leaks, which can lead to sterility breaches, product spoilage and contamination. Therefore, it is important to ensure that these packages are properly sealed to prevent leaks and contamination. VeriPac 410 is a non-destructive seal and leak detection system that can help ensure the integrity of low head space packages.

Applications of low head space packages

Low head space packages are used in a variety of industries, including:

  • Pharmaceutical industry: Low head space packages are used to package pharmaceuticals, such as tablets, capsules, and transdermal patches.
  • Medical device industry: Low head space packages are used to package medical devices, such as, suture packaging.
  • Personal care industry: Low head space packages are used to package personal care products, such as serums, lotions and creams packaged in sachets and pouches.

Low Head Space Package Inspection Using Force Decay Technology

Force Decay serves as a quantitative method for detecting leaks, especially in packaging with low headspace. The applicable packaging formats encompass non-porous materials, such as films, laminates, or foils. This method, being non-destructive, leaves the sample packages undamaged and unaltered. Following the completion of the test, the packages can seamlessly return to the batch without the need for disposal.

The testing system employs nested tooling to position the package consistently and restrict the unmeasured expansion of the package under examination. Initiating the test involves creating a vacuum in the test chamber, prompting the package to expand within it. Vacuum levels are continuously monitored throughout the test cycle, evaluating the package using the ASTM F2338 vacuum decay leak test method.

Multiple packages can undergo testing in a single test cycle, with the force decay measurement system discerning any defective packages. Defective packages exhibit a decay in the expansion force or vacuum level during the test cycle. The location of the defective package or cavity is then pinpointed. Force decay proves most effective when assessing multi-cavity package formats.

PTI’s VeriPac 410 inspection technique leverages force decay technology for non-destructive seal and leak detection in blister packs, sachets, and pouches with low headspace. VeriPac 410 functions as a vacuum based Container Closure Integrity test (CCIT) method, capable of testing multiple packages in a single test cycle. The force decay measurement system identifies any defective packages. This technology accurately measures force by observing the surface deflection of a package during a typical vacuum-based test cycle. The force measurement capability enables the VeriPac 410 series to pinpoint which package is defective while also conducting leak tests on packages with minimal headspace. Force decay remains the most effective technology, particularly in the assessment of multi-cavity package formats. This technology is scalable from the laboratory to automated inline inspection platforms.

Benefits of Force Decay leak testing

  • Non-destructive and non-invasive
  • Non-destructive, non-subjective, no sample preparation
  • The test protocol is programmed into the testing unit with high degree of repeatability.
  • Multiple packages can be tested in a single test cycle
  • The test is operator independent and can be performed with minimal training
  • Supports sustainable packaging initiatives
  • Optimal solution for in-process testing
  • Cost effective with rapid return on investment
Readmore...
force decay technology, ccit, force decay, low head space packaging, cci test, cci testing
794
18
Oct 2023

Helium Leak Detection for Blister Package Leak Testing

Helium Leak Detection for Blister Package Leak Testing

Blister packaging has gained widespread popularity as a versatile and efficient method for packaging various products, particularly in industries like pharmaceuticals, nutraceuticals and food. This packaging solution typically involves the creation of a plastic cavity or blister that is custom designed to securely hold and protect the product it contains. The design of the blister can vary significantly, accommodating a wide range of product shapes and sizes, making it a versatile option for manufacturers. It ensures that the product remains visible to consumers, allowing for easy identification and branding, which is especially crucial in retail settings.

To ensure the product's integrity and longevity, blister packaging is typically sealed with materials like aluminum foil or plastic film. This sealing process not only provides a protective barrier against external factors such as moisture, light, and contaminants but also enhances the product's shelf life. In the pharmaceutical industry, blister packaging is widely used to provide precise dosages of medications and to maintain their stability and sterility. In the food industry, it is often employed to preserve the freshness of perishable items and prevent tampering or contamination. Overall, blister packaging offers a combination of product visibility, protection, and convenience, making it an indispensable choice for many manufacturers looking to meet both functional and marketing requirements.

However, the significance of maintaining the integrity of blister packaging cannot be overlooked, as it plays a pivotal role in avoiding contamination, preserving product freshness, and extending shelf life. One highly effective method employed for assessing blister package integrity is helium leak detection, a process that relies on the unique properties of helium as a tracer gas.

Blister Package Integrity Testing using Helium Leak Detection.

Helium leak detection is a Container Closure Integrity Test (CCIT) that is used to identify leaks in blister packages. The test works by introducing helium gas into the blister package and then measuring the amount of helium that escapes. If there is a leak in the package, helium will escape, and the leak detector will produce a signal.

To test a blister package for leaks using (helium leak detection), the package is first placed in a test chamber. The test chamber is then evacuated, and helium gas is introduced into the package. The package is then held under vacuum for a period of time. After the holding time has elapsed, the test chamber is vented, and the leak detector is used to measure the amount of helium that has escaped from the package. If the amount of helium that has escaped from the package is above a certain threshold, the package is considered defective. Defective packages are rejected and not shipped to customers.

Why is Helium used as a Tracer Gas?

  • It is the smallest and lightest gas, so it can easily escape through even the smallest leaks.
  • It is inert, meaning that it does not react with other substances.
  • It is non-toxic and non-flammable.
  • It is abundant and relatively inexpensive.

Helium leak detection is a highly sensitive and reliable method for testing the integrity of blister packages. It is widely used in the pharmaceutical industry to ensure that blister packs are leak-proof and protect the contents from moisture, oxygen, and other contaminants.

Readmore...
helium leak detection, blister package leak testing, helium leak testing, cci, container closure integrity test, ccit
1033
16
Oct 2023

Ensuring Quality Revolutionizing Coffee Packaging with Precision Control

Ensuring Quality Revolutionizing Coffee Packaging with Precision Control

In the early days, coffee was often packaged in simple sacks or bags made from natural materials, such as burlap or hemp. These materials were not very airtight, so they could not keep coffee fresh for long periods of time. Vacuum sealed packaging was invented during the 1900s. This packaging removes all of the air from the packaging, which helps to keep coffee fresh for an extended period of time. Vacuum sealed packaging is also lightweight and relatively inexpensive, so it quickly became the most popular type of coffee packaging.

In recent years, there has been a growing trend towards more sustainable coffee packaging. This trend is driven by concerns about the environmental impact of traditional coffee packaging materials, such as plastic and tin.

Overview of Coffee Packaging

Coffee packaging refers to the process of packaging and presenting coffee beans or ground coffee for distribution, sale, and consumption. Coffee packaging serves several important purposes, including preserving the freshness and flavor of the coffee, protecting it from external elements such as light, moisture, and oxygen, and providing information to consumers.

Coffee packaging plays a crucial role in ensuring that coffee reaches consumers in optimal condition, with its flavor and aroma preserved. It also serves as a means of communication between coffee producers and consumers, conveying information about the coffee's characteristics and the values of the company that produces it.

Integrity testing of coffee packaging ensures that the packaging is free of leaks and defects that could compromise the quality of the coffee. This is important to do, as leaks can allow oxygen, moisture, and light to enter the packaging, which can all degrade the flavor of the coffee.

Here are some of the benefits of integrity testing for coffee packaging:

  • It can help prevent coffee from going stale or developing off-flavors.
  • It can help protect coffee from contamination.
  • It can help ensure that coffee meets quality standards.
  • It can help reduce product recalls.
  • It can help improve customer satisfaction.

Quality Testing Using Vacuum Decay Technology

Vacuum decay technology is a non-destructive method for testing the integrity of coffee packaging. It is a Container Closure Integrity Test (CCIT) method with a proven capability of non-destructively testing packaging at the production line with unmatched reliability and sensitivity. Non-destructive testing not only allows a greater understanding of package quality, but also reduces waste as compared to destructive test methods. Waste reduction, in turn, results in a higher return on investment and brings operations closer to green initiatives.

Vacuum decay technology operates by placing sample packages in a closely fitting evacuation test chamber, which is equipped with an external vacuum source. Single or dual vacuum transducer technology is used to monitor the test chamber for both the level of vacuum as well as the change in vacuum over a predetermined test time. The changes in absolute and differential vacuum indicate the presence of leaks and defects within the package. VeriPac series is a practical alternative to destructive test methods and can precisely detect leaks as small as 5 microns, identifying process issues before they become critical, avoiding catastrophic quality deviations.

Benefits of Vacuum Decay Test System

  • Non-destructive technology.
  • ASTM Test Method F2338, FDA Consensus Standard and referenced in USP 1207 Guidelines.
  • Accurate, repeatable results.
  • Pass/fail results backed by quantitative test data.
  • Completely tool-less with no changeover to test different packaging formats.
  • Identifies which cavity is defective.
  • Eliminates destructive, subjective testing methods.

Vacuum decay technology is a valuable tool for ensuring the quality of coffee packaging. It can help prevent coffee from going stale or developing off-flavors. It can also help protect coffee from contamination. If you are a coffee roaster or retailer, integrity testing of coffee packaging is an important quality control measure that you should implement.

Readmore...
vacuum decay technology, vacuum decay leak testing, package integrity testing, cci testing, ccit
792
14
Jul 2023

CCI Testing of Intravenous Bags Using Vacuum Decay Technology

CCI Testing of Intravenous Bags Using Vacuum Decay Technology

Container closure integrity (CCI) testing of intravenous (IV) bags is an important quality control measure to ensure the safety and efficacy of the products. CCI testing helps verify that the container closure system, including the bag and its closure, maintains its integrity throughout the product's shelf life and prevents any leakage or contamination.

Various methods, including visual inspection, dye immersion testing, bubble emission testing, headspace gas analysis, and Vacuum decay testing can be employed to assess the integrity of the container closure system. These methods help to identify any defects or breaches that may compromise the sterility and stability of the IV bags. Manufacturers should select an appropriate method based on their specific requirements and regulatory guidelines to ensure the quality and safety of the IV bags.

Vacuum Decay Technology for CCI Testing of Intravenous Bags

Vacuum decay technology is an FDA-approved leak detection technique that can be used for CCI testing of high-risk package applications. The non-destructive nature of the process allows for greater understanding of packages, testing at a greater frequency with more accuracy and with less waste. Vacuum decay technology is capable of detecting leaks in sealed rigid, semi-rigid and flexible packaging made of non-porous or porous materials and has been proven to provide repeatable, reliable and quantitative test results.

VeriPac testing systems using Vacuum decay leak testing are highly effective for leak testing of IV bags. Using a differential pressure transducer leak test system, the test method is capable of detecting package leaks and invisible defects in the IV bag body and also in seams, welds and port areas. This method is non-invasive, non-subjective and does not require sample preparation.

The test method works by connecting the VeriPac test systems to a manually operated test chamber containing an IV bag. The next step is to draw a vacuum on the IV bag in the test chamber and observe any changes in the vacuum level. If there is any damage to the package, air or liquid will flow from the package into the chamber, causing pressure fluctuations. On the other hand, defect-free packages do not leak any pressure into the chamber, keeping the chamber vacuum level constant. Regardless of the location of the defect, the vacuum decay system can pick up both large and small defects. It takes about 30 seconds for testing IV bags, repeatable and sensitive to 15 microns for liquid and gas leaks.

Benefits of Vacuum Decay Technology

  • Eliminates destructive, subjective testing methods.
  • Non-destructive technology.
  • Accurate, repeatable results.
  • Pass/fail results backed by quantitative test data.
  • Eliminates destructive, subjective testing methods.
  • ASTM Test Method F2338, FDA Consensus Standard and referenced in USP 1207 Guidelines.
  • Meets Annex 1 regulatory guidelines.

Recent regulatory changes have shifted requirements and strategies for container closure integrity. IV bags and flexible parenteral presentations have experienced the greatest impact from these new perspectives on quality. IV bags have always presented a significant risk. New provisions to Annex 1 have made the requirements for quality risk management (QRM) clear, and USP guidance documents outline the need for greater control. Based on the regulatory requirements and guidance, practical solutions for IV bag container closure integrity should offer non-destructive, practical and deterministic approaches to assure integrity. There are critical considerations for IV bag QRM, and strategic approaches to assuring integrity of IV bags and flexible parenteral presentations to satisfy the shifting regulatory environment.

Readmore...
vacuum decay, container closure integrity testing, container closure integrity, cci testing, intravenous bags, ccit
717
27
Jun 2023

How does Airborne Ultrasound Technology Help in Testing Tyvek Packages?

How does Airborne Ultrasound Technology Help in Testing Tyvek Packages?

Tyvek is a highly durable and lightweight material that is commonly used in the medical industry for the packaging and sterilization of medical devices and equipment. It is a non-woven material made from high-density polyethylene fibers that are bonded together using heat and pressure. Medical device manufacturers and packaging professionals prefer Tyvek packaging because it is a sterile barrier that protects against bacteria and other contaminants. Tyvek is also breathable, allowing for sterilization methods such as ethylene oxide and gamma irradiation to be used effectively.

Tyvek packaging is used in a variety of medical applications, including surgical gowns, drapes, and covers, as well as in medical device packaging such as catheters, implants, and instruments. Its use in the medical industry is regulated by government agencies such as the FDA to ensure that it meets the necessary standards for safety, sterility and efficacy.

What are the Challenges Associated with Tyvek Package Testing?

Leak testing of Tyvek packages is a critical step in ensuring the integrity of the package and the safety of its contents. However, there are several challenges associated with leak testing Tyvek packages, including:

  • Sensitivity of the test method: The sensitivity of the leak testing method can impact the ability to detect leaks in Tyvek packages. For example, some testing methods may not be able to detect very small leaks or may be impacted by the size or shape of the package.
  • Environmental conditions: Environmental factors, such as temperature, humidity, and pressure, can impact the results of the leak test. For example, changes in temperature can cause the package to expand or contract, which can impact the tightness of the seal and the results of the test.
  • Interference with product properties: Some leak testing methods may use test gases or liquids that can interact with the product inside the package. For example, the test gas may cause the product to degrade or impact its efficacy, which can affect the overall performance of the package.

In summary, leak testing of Tyvek packages requires careful consideration of the test method, the packaging process, and the environmental conditions to ensure accurate and reliable results.

Testing Tyvek Packages Using Airborne Ultrasound Technology

With today’s sensory technology advancements, Tyvek packages can be tested using Airborne Ultrasound technology. Airborne Ultrasound technology is a seal quality testing method that uses airborne ultrasound to evaluate seals for flaws and defects non-destructively. It is an ASTM Test Method F3004 for testing the seal quality and a recognized FDA standard for seal quality inspection. These tests are mostly carried out to improve seal quality inspection of pouches, flexible packaging, and tray seals. Tyvek, paper, foil, film, aluminum, plastic, and poly are just a few of the packaging materials that may be used with Airborne Ultrasound technology to enable thorough seal quality evaluations.

In this method, sound waves are reflected as ultrasonic waves are transmitted through the packaging seal. If there is a leak or flaw, the signal intensity is decreased or lost. To find the leak, these differences are closely monitored. Most leak test techniques encounter the problem of being unable to identify non-leaking defects. By using Airborne Ultrasound technology, users may recognize a variety of seal faults, including visible and invisible, leaking and non-leaking, process-related and random. Airborne ultrasound can be applied in the laboratory for offline in-depth seal quality analysis as well as for 100% online seal quality inspection on the production line.

Benefits of Airborne Ultrasound Technology

  • Non-destructive, non-subjective, no sample preparation.
  • Deterministic inspection method producing quantitative results.
  • Can be integrated for 100% online defect detection of the final pouch seal.
  • Repeatable and reliable results.
  • Eliminates subjective manual vision inspection methods.
  • Characterizes overall quality and uniformity of the seal.
  • Economical cost-effective solution for seal integrity testing the final pouch seal.

The method used for leak testing Tyvek packages will depend on the specific requirements of the medical device or equipment being packaged and the regulations set forth by regulatory agencies such as the FDA. It is important to use a validated and appropriate method for leak testing to ensure the safety and effectiveness of the packaged medical devices or equipment. Airborne Ultrasound is one such technique.

Readmore...
airborne ultrasound technology, package integrity testing, container closure integrity testing, container closure integrity, ccit
586
20
Jun 2023

Automated CCI Testing for Parenteral Products Using VeriPac LPX

Automated CCI Testing for Parenteral Products Using VeriPac LPX

Automated Container Closure Integrity Testing (CCIT) is a process used to evaluate the integrity of containers for parenteral products, such as vials or pre-filled syringes, to ensure that they are free of defects or leaks. The goal of CCI testing is to ensure that the contents of the container remain sterile and protected from contamination.

There are several advantages to using automated CCI testing, including:

  • Speed and Efficiency: Automated CCI testing is much faster and more efficient than manual operator testing, which can save time and resources for manufacturers.
  • Accuracy: Automated CCI testing is less prone to human error, which can result in more accurate results and increased confidence in the integrity of the container.
  • Reproducibility: Automated CCI testing is designed to be repeatable, allowing manufacturers to consistently and accurately monitor the integrity of containers.

Parenteral Products and its Advantages

Parenteral products are medical products that are administered directly into a patient's bloodstream, bypassing the digestive system. This means that the product is delivered into the body through a route other than the orally, such as intravenously, intramuscularly, subcutaneously, or through other routes. Examples of parenteral products include injectable drugs, intravenous solutions, intravenous nutrition products, blood transfusions, and others. These products are subject to strict quality control and regulatory standards to ensure their safety, efficacy, and sterility, and to maintain the integrity of their packaging to prevent contamination. The specific form of the parenteral product (e.g. solution, suspension, etc.) depends on the product and patient needs.

Advantages of Parenteral Products

Here are some advantages of parenteral products:

  • Rapid onset of action: Parenteral products are delivered directly into the bloodstream, which allows for a faster onset of action compared to oral administration. This can be especially important in emergency or critical care situations.
  • Measures and verifies container closure system integrity
  • More effective for some conditions: Some drugs and therapies are more effective when delivered parenterally because they are absorbed more quickly or may not be well absorbed orally.
  • Alternative for patients unable to take oral medications: Parenteral products provide an alternative for patients who are unable to take oral medications, such as patients with gastrointestinal issues or patients who are unconscious.

CCI Testing of Parenteral Products

CCI Testing is performed on parenteral products using a variety of methods, including vacuum decay leak testing, high-voltage leak detection, and others. The specific method used will depend on the type of product, the packaging material, and the desired level of sensitivity. The goal of CCI testing is to provide confidence in the integrity of the packaging and prevent any incidents of contamination or product failure.

The VeriPac LPX Series is a range of completely automated package quality inspection systems for container closure integrity inline testing. The VeriPac LPX has a dynamic robotic design that is customized to your production needs. To fulfil the demands of a production line, the LPX Series offers modular, scalable solutions. This adaptable platform offers a range of package forms that may be reliably automated. Flexible packaging, rigid containers, and parenteral pharmaceuticals are only a few examples of the applications for LPX automation.

The packages will be picked up and placed by a quick robotic gripper arm into the VeriPac LPX test chambers, where a quick vacuum-based test will be performed. Along with the quantitative test result data, a clear PASS/FAIL result is shown. In order to maintain continuous flow and seamless downstream processing, the packages will then be returned to the product line. Rejects are automatically taken off the production line.

Benefits of VeriPac LPX

  • Automated testing enables the highest level of container quality assurance.
  • Deterministic, quantitative test method.
  • ASTM Test Method F2338 and FDA standard.
  • Highly accurate test results - low false positives and false negatives.
  • Non-destructive, non-subjective, no sample preparation.
  • USP <1207> complaint.

CCI testing is used to evaluate the sealing of the product container and detect any leaks, breaches, or defects in the packaging. This is important because parenteral products are sensitive to environmental factors such as temperature and pressure changes, and any breaches in the packaging could result in contamination or degradation of the product.

Overall, automated CCI testing is an important tool for ensuring the safety and quality of parenteral products, and is increasingly being used by manufacturers to ensure that their products meet regulatory requirements and industry standards.

Readmore...
container closure integrity testing, CCIT, pharmaceutical package testing, parenteral product leak testing, CCI technologies, vacuum decay leak testing
508
01
Mar 2023

Package Integrity Testing of MAP (Modified Atmosphere Packaging) Using VeriPac Series

Package Integrity Testing of MAP (Modified Atmosphere Packaging) Using VeriPac Series

Meat processors are relying on technologies to extend product shelf life more than ever before, which puts concerns like shelf-life stability and packaging quality to the forefront of challenges. Although meat-based snack products and pet products come in a variety of packaging formats, they all require package integrity assurance/container closure integrity testing for extended shelf life.

Flexible packaging, particularly pre-made pouches and form-fill-seal pouches and bags, is the most preferred format for meat-based snack foods and pet food products. With its capacity to provide shelf stability and ease of opening, flexible packaging makes for the best package appearance. The market for meat products for animals has grown rapidly, as consumers are willing to spend more and demand higher-quality products. Meat snacks intended for animal consumption as well as human use must be free of mold or product deterioration.

Modified Atmosphere Packaging (MAP) tray packs are a common packaging option for fresh beef, hog, and poultry products as well as many other processed meats. By significantly reducing spoilage and extending shelf life, the MAP method provides consumers with fresh items that look good. Once an MAP package is sealed, it is essential to maintain the seal integrity to avoid leaks that can let O2 or other environmental pollutants enter the package.

Explain MAP

Modified Atmosphere Packaging (MAP), which can detect leaks as small as 10 microns, is widely used for perishable products. Package integrity can be tested by monitoring the amount of residual oxygen in the headspace of the package. According to the method, the product must be set up for stability and the headspace must be measured at various time intervals. The six-day test, which frequently measures O2 levels over the maximum threshold (about 3%), is used for production purposes. A 50-micron defect significantly reduces a product's shelf life, but it typically passes a six-day O2 test with flying colors. Six days of output are already palletized and stored in case the O2 test identifies a quality issue. Vacuum Decay can find breaches as small as 10 microns, detect oxygen-critical defects in real time at the source, and prevent extensive quality issues.

VeriPac Series for Testing MAP Meat Packages

The VeriPac Vacuum Decay Series of inspection systems have a proven capacity to non-destructively test packaging down to O2 sensitive leak sizes, which reduces waste and enhances testing capabilities. By consistently detecting leakage as tiny as 10 microns, the technology may identify process issues before they become critical. VeriPac offers quantitative data that is correlated to leak rate and leak size in addition to a clear attribute result (PASS or FAIL).

The VeriPac D-Series uses a revolutionary FLEX-Chamber to test flexible packaging formats since it is resistant to package changes and removes the requirement for changeover when testing different size pouches. Additionally, more than one package may be tested during a single test cycle. The VeriPac Series utilizes a rigid packaging test chamber for MAP Meat Tray Package testing. Depending on the needs of the production, the test system operation can be set up for either semi-automatic or manual operation.

Advantages of VeriPac Series

  • Non-destructive, no sample preparation.
  • Deterministic, quantitative test method.
  • Defect detection down to 0.2 ccm.
  • High level of sensitivity, repeatability and accuracy.
  • Short cycle time provides operators with PASS/FAIL results.
  • Small footprint and modular portable design.
  • ASTM test method and FDA standard.
  • Referenced in USP 1207 guidance.

Since it eliminates subjective results, the VeriPac series is a practical alternative to destructive testing. Case studies have proven that Vacuum decay leak testing technology offers a rapid return on investment when evaluating the dramatic decrease in waste created by destructive test techniques.

Readmore...
package integrity test solutions, container closure integrity testing, container closure integrity, vacuum decay leak testing, ccit
559
13
Sep 2022

Evaluating Snack Food Package Integrity with VeriPac Vacuum Decay Series

Evaluating Snack Food Package Integrity with VeriPac Vacuum Decay Series

The difficulty of maintaining shelf life for packaged snack foods never end. The majority of snack foods are oxygen and moisture sensitive. Package integrity issues can lead to mold growth, oxidation, taste loss, and spoilage. Leaks smaller than 10 microns can contaminate a product with bacteria, and comparable leak sizes might allow moisture or oxygen in. Snack foods come in a wide range of packaging types, but they all require package integrity assurance for extended shelf life.

Even a tiny leak in the container might cause microbial contamination or oxygen penetration, and traditional test methods may not be able to find such leaks. The sensitivity of the testing method is crucial for preserving the quality of the product during its shelf life. In this blog, we will discuss how VeriPac Vacuum Decay technology can efficiently leak test snack food packages.

VeriPac Vacuum Decay Series for Snack Food Package Integrity Testing

VeriPac Vacuum Decay technology is an ASTM-approved, FDA-recognized test technique with the ability to deliver reliable, consistent, repeatable, and accurate quantitative data. It is a non-destructive container closure integrity testing method that can identify micro leaks while taking into consideration a variety of packaging types, including filled and sealed rigid, semi-rigid, and flexible packaging composed of non-porous or porous materials.

Vacuum Decay leak testing is recognized as an efficient alternative for destructive testing techniques like water bath or dye intrusion because it removes subjectivity and lowers waste and costs. It is proven to provide a short-term return on investment. Critical packaging defects are consistently found by the VeriPac test systems, which also provide useful packaging process insights. The VeriPac Series will evaluate a wide range of high-risk packaging applications and ensure that the final product satisfies consumer and regulatory requirements. The suitable VeriPac model is chosen, based on the intended package type and leak test sensitivity. Depending on the application, configurations can be optimized and customized.

Working Principle

Under this technique, VeriPac leak testers are connected to a test chamber specially designed to hold the sample package. The package that has been put inside the test chamber is subjected to vacuum. A single or dual vacuum transducer technology is used to monitor the vacuum level as well as how the vacuum changes during a predefined test period. The existence of leaks and other defects within the package is determined by monitoring variations in an absolute and differential vacuum.

VeriPac Inspection System Benefits

  • FDA Consensus Standard and ASTM Test Method F2338.
  • Cost-effective and quick return on investment.
  • Simplifies the inspection and validation procedure.
  • Non-destructive, non-subjective, no sample preparation.
  • Supports sustainable packaging and zero waste initiatives.
  • Referenced in USP Chapter 1207.

Flexible packaging such as sachets, stick packs, and pouches, composite cans, and modified atmosphere packaging (MAP) are common types for snack food packaging. For snacks like nuts, savory snacks, chips, crackers, cookies, beef jerky, nutrients, and granola bars, they provide the ideal packaging appearance. They offer shelf stability and simplicity of quick opening. While every packaging offers a different set of advantages and product appeal, every format also has a different set of difficulties for maintaining the integrity of the package and seal.

Readmore...
container closure integrity testing, container closure integrity, vacuum decay leak testing, cci technologies, ccit
1615
06
Sep 2022

Techniques Involved in Leak Testing Vials

Techniques Involved in Leak Testing Vials

Pharmaceutical vials are small bottles or containers designed for parenteral administration (injection or infusion) in a single patient for a single case, procedure, or injection. They offer the highest Container Closure Integrity (CCI), which is a measure of how well a container protects the pharmaceutical ingredient against contamination by a variety of factors such as moisture, air, and chemicals.

In pharmaceutical manufacturing, the leak test is a critical parameter for vials. A visual inspection process may not detect defects that cause a sterile vial to leak. Thus, the pharma companies move toward CCI test methods. Many manufacturers are not sure how to conduct a container closure integrity test, but parenteral product leak testing is very important to assure that the product remains sterile in the packaging configuration throughout the duration of the product's shelf life.

What is CCIT?

Container Closure Integrity Testing (CCIT) is an important quality control technique for pharmaceuticals. It is an assay that evaluates the container closure and its capacity to keep possible contaminants out. Microorganisms, reactive gases, and other chemicals are examples of potential contaminants. This test is necessary for parenteral products since the seal quality is crucial to the drug product's sterility and quality throughout its shelf life. Inadequate sealing can accelerate the expiration of a drug product and cause significant risk to the patient's health if the product loses its sterility.

Previously, sterility testing was used to demonstrate container integrity. However, due to the insensitivity and other challenges associated with sterility tests, a variety of container closure integrity tests were developed. MicroCurrent HVLD, Vacuum Decay, and Helium Leak Detection are some of them. We give a brief overview of the above pharmaceutical package testing methods that can be used for testing pharmaceutical vials.

Leak Testing Vials Using Various CCI Techniques

  • MicroCurrent HVLD Technology

  • High Voltage Leak Detection (HVLD) is a non-destructive Container Closure Integrity technology that is used to evaluate the closure integrity of parenteral product packaging. HVLD technology makes use of quantitative electrical conductivity and resistance principles. The technology works by transmitting high voltage microcurrent impulses through sample packages. The electrical resistance of the sample lowers in the presence of a leak, resulting in an increase in current. HVLD technology relies on the “flow” of current, while other leak detection methods rely on the flow of gas or liquid. The MicroCurrent HVLD lowers product voltage exposure to less than 5% of that experienced while testing with similar HVLD technologies. When compared to conventional HVLD systems, reducing exposure voltage not only eliminates any risk that the voltage provides to the product, but also significantly reduces Ozone formation during operation. MicroCurrent HVLD can be used to test for leaks in nonporous, rigid or flexible packages, as well as packages containing liquid or semi-liquid products.

  • Helium Leak Testing

  • Helium leak testing is the method of locating leaks in enclosed or sealed systems by utilizing helium as a “tracer” gas and measuring the concentration as it exits owing to leakage. The package is filled with helium and vacuumed in this method. A helium leak detector is used to determine how much helium leaks from the container. The outcome is expressed as a leak rate. Helium leak testing is used in product design, product quality studies, failure analyses, and validation, in addition to being an effective container closure integrity test technique. Helium leak testing ensures high sensitivity leak detection, which is not achieved by many other leak test methods.

  • Vacuum Decay Technology

  • Vacuum Decay is a deterministic Container Closure Integrity testing methodology that relies on package integrity and leak path detection. Unlike human inspection and other non-deterministic testing techniques, Vacuum Decay provides quantitative and reliable test results to assure package integrity. Vacuum Decay technique can handle a wide range of package types, including filled and sealed rigid, semi-rigid, and flexible packaging comprised of nonporous or porous materials. This test involves placing packages in an evacuation test chamber with an external vacuum source. Vacuum levels are regularly monitored to detect deviations from a predetermined intended vacuum level. A defect in the packaging will allow air to escape into the test chamber. Packages with no defects, on the other hand, maintain a steady chamber vacuum level. Over the years, Vacuum Decay technology has proven to be one of the most practical and sensitive vacuum-based leak detection technologies.

Historically, dye immersion and microbiological immersion were the two most popular methods for leak testing vials. Recently, the USP has issued guidelines requiring the use of deterministic methods in order to produce more consistent and predictable results. USP<1207> recommends that dye immersion tests are avoided and HVLD or Vacuum Decay tests are used instead.

Readmore...
parenteral product leak testing, pharmaceutical package testing, CCIT, container closure integrity, container closure integrity testing
2831
03
Feb 2022

Package Integrity Testing of Flexible Packages Using VeriPac FLEX Series

Package Integrity Testing of Flexible Packages Using VeriPac FLEX Series

The physical ability of a package to protect its contents with the necessary level of protection during a specific time is referred to as package integrity. Package integrity tests are performed to detect packaging issues that might affect the sterility of a medical device. Previously, microbial challenge or dye penetration testing was used to determine whether the product packaging has maintained its microbial barrier qualities. Due to technological advancements, VeriPac FLEX systems are currently being used for testing the package integrity of flexible packages.

VeriPac FLEX Systems to Ensure the Integrity of Flexible Packages

CCIT’s VeriPac FLEX systems are versatile non-destructive package inspection systems that are intended particularly for evaluating dry-filled pouches and flexible packaging. VeriPac FLEX systems are available in several configurations for both the leak test instrument and the test chamber capacity to accommodate various package specifications and test sensitivity requirements. VeriPac inspection systems provide a simple PASS or FAIL result, as well as quantitative test data. They offer unparalleled sensitivity, reliability, and practicality in testing a wide variety of flexible package formats and sizes, without changing settings or tools.

The ASTM technique for vacuum decay leak testing (F2338), which is specified in ISO 11607 and recognized by the FDA as a consensus standard for package integrity test solutions, is used by VeriPac FLEX Systems. As an alternative to destructive testing, they eliminate subjectivity while also reducing waste and cost. When compared to destructive techniques like water bath or blue dye leak test, vacuum decay leak testing technology has proven to provide a quick return on investment. The VeriPac test devices consistently detect significant packaging errors and provide useful packaging process information.

Technology Overview

On the basis of the package size, the VeriPac tester is initially attached to the appropriate FLEX chamber. The Integrated Flexible test Chamber (IFC) and Drawer Style test chamber (D-Series) are the two test chamber configurations available to connect with the VeriPac instrument depending on package specification and test sensitivity requirements. The Integrated Flexible test Chamber (IFC) is designed for low-headspace sachets or stick packs. Depending on the package size and requirements, the Drawer Style test chamber (D-Series) is available in 2 basic sizes: Small (D) and Large (DXL). Custom designs are possible for large packaging types and bulk products. The way the package is tested is what sets VeriPac FLEX systems apart. CCIT makes use of a flexible membrane that fits the shape and size of the package, preventing stress and damage to the film materials. In a single test cycle, several packages can be tested.

VeriPac FLEX System Advantages

  • Non-destructive, non-subjective, no sample preparation
  • Cost-effective with rapid return on investment
  • Accurate and repeatable results
  • USP< 1207> compliant
  • Supports sustainable packaging and zero waste initiatives
  • ASTM test method and FDA standard
  • Deterministic, quantitative test method
  • Simplifies the inspection and validation process

Manufacturers are still struggling with quality standards for flexible packaging. CCIT’s VeriPac FLEX has proven to minimize manufacturing waste and costs while boosting package quality assurance and brand value. It has high test sensitivity and is capable of identifying micro leaks down to the single digit micron range.

Readmore...
package integrity, package integrity test solutions, cci technologies, ccit, container closure integrity
514
01
Feb 2022

Development and Validation of CCI Testing Method for Pre-filled Syringes

Development and Validation of CCI Testing Method for Pre-filled Syringes

Pre-filled syringes are becoming more popular as a preferred container closure system for biologics. Pre-filled syringes must offer an inherent barrier that maintains drug product stability and sterility throughout its entire shelf life as a primary container closure system. The ability of the system to retain its microbial barrier integrity must be checked and demonstrated by the drug manufacturers. In 2008, the FDA endorsed CCI testing as part of the sterile product stability protocol.

The pharmaceutical industry has witnessed substantial technical developments in CCI testing in response to rising regulatory demands. MicroCurrent HVLD, Vacuum Decay Leak Testing and Helium Leak Detection are examples of new technologies that have proven enhanced detection capabilities above traditional Dye and Microbial Ingress approaches. Many of the technologies have been employed for CCI testing of drug product stability.

CCI Testing Strategy for Development

Many CCI failure modes can occur throughout the life cycle of a syringe, from component production to drug product filling and sealing, device assembly and packaging, and finally distribution and storage. It is critical to create a comprehensive plan for conducting CCI testing across the whole syringe life cycle.

The creation of the CCI testing technique begins with a detailed study of the construction, design, and manufacturing procedures used in syringes. The failure modes and impacts associated with each aspect of CCI were identified first. The next step was to evaluate whether CCI testing is required, as well as the intended uses and testing frequencies, using a risk-based approach. Knowing that the needle shield compartment seal integrity had been verified by the component supplier, apply a non-routine CCI test to validate its seal integrity during drug product loading and sealing, as well as during device assembly. To ensure CCI was achieved and successfully maintained, implement a complete set of CCI tests across the entire product development cycle for the product-containing syringe barrel compartment.

Method Development and Method Validation

Method development consists of optimizing testing parameters and determining the appropriate pass/fail threshold.

  • Testing parameters optimization
  • Initially, several defect standards of known sizes were examined alongside undamaged samples using varied testing conditions. The relationships between key method parameters and instrument responses to intact and defect samples were comprehensively investigated, with the objective of determining a set of variables that give optimal separation between intact and defect samples. i.e. signal-to-noise ratio or SNR.

  • Pass/fail threshold determination
  • The improved method was utilized to evaluate different lots of filled intact syringes representing relevant product variations, such as drug product batches, and packaging locations and lines, in order to define the preliminary pass/fail threshold. For intact samples, the results of the tests were statistically assessed to determine the instrument baseline and variation (σ). Typically, the pass/fail threshold should be 10 σ higher than baseline. The pass/fail threshold was then further refined and verified by testing defect standards of known sizes.

CCI testing techniques were validated for the pharmaceutical product package. Since the drug product formulation and package design may change during the early development stages, a step-by-step approach was adopted to validate the methods in line with the product development stages. Once product design and packaging design are complete, the methods are fully validated to support CCI testing for initial consistency and process evaluation. The power of the additional long-term method may be further validated before this method is implemented in QC laboratories for routine testing.

During package and pharmaceutical product development and manufacturing, properly selected and verified methodologies are critical for demonstrating container closure integrity. It should be noted that existing CCI testing methods do not provide an optimal solution for all pre-filled syringe CCI testing requirements. To maintain total container closure integrity, an integrated solution involving CCI testing as well as additional engineering and administrative controls is required.

Readmore...
parenteral product leak testing, container closure integrity, CCI testing, CCIT, vacuum decay leak testing
961
24
Jan 2022

A Simple Guide to CCIT Services

A Simple Guide to CCIT Services

The integrity of the container closure system is crucial for ensuring that all portions of pharmaceutical products stay sterile during transportation, storage, and usage. Product contamination occurs as a result of leaking containers or closures. A non-destructive packaging inspection technology used to keep an aseptic barrier against possible contaminants is called Container Closure Integrity Testing (CCIT), commonly known as leak detection. The sterility and product quality of sterile final pharmaceutical and biological products should be maintained throughout their shelf life using container closure systems.

Various CCI Services

For testing the integrity of many package formats, CCIT offers expertise for the application of the best deterministic inspection technologies and test methodologies.

Feasibility Studies for Testing Package Quality

The first stage in evaluating and determining the optimal CCI technology and test technique for a certain application is to conduct an experimental or a more extensive feasibility study. To evaluate if a proposed CCI solution works and establish optimal test circumstances and Limit of Detection (LoD) is the goal of a feasibility study. CCIT’s aim is to provide clients with deterministic package integrity test solutions and help them in the installation of comprehensive CCI systems. This process starts with a client's problem description and ends with a clear approach to ensuring container closure integrity. Feasibility studies by CCIT for package quality testing provide customers with a complete report on the quantitative test technique.

Test Method Development for CCI Testing

CCIT conducts feasibility studies and develops test methods for package quality testing, recommending test methods based on the customer's needs for a given package or container. CCIT's Test Method Development focuses on the package/product characteristics and the extent to which the package attributes must be challenged to ensure closure integrity. The Test Method Development comprises adjusting test parameter settings for a given test method, such as vacuum or high voltage, test cycle periods, and pass/fail criteria. The comprehensive report will include precise test processes and criteria, as well as test findings and leak rates that the customer may expect, along with conclusions and recommendations. Before being included in the final report, all of the worked-out test methods go through validation checks to verify that they are reproducible, accurate, specific, exact, and acceptable for their intended application.

Equipment and Application Support

CCIT offers analytical leak detection services as well as package integrity testing equipment and applications knowledge. We also provide demonstrations on equipment and application services.

At CCIT's laboratory, we have the following technological platforms:

  • VeriPac - Vacuum Decay applications
  • E-Scan - MicroCurrent High Voltage Leak Detection( MicroCurrent HVLD)
  • Seal-Scan®/Seal-Sensor - seal inspection through Airborne Ultrasound

CCIT also offers the following services:

  • Installation, training, and validation services for CCI applications
  • Calibration, technical assistance, and overall equipment maintenance
  • Navigating USP 1207/ASTM/ISO standards - CCIT and regulatory consultancy services

CCIT.s.a is Europe’s leading package testing equipment provider for pharmaceutical, medical device, food, and nutrition companies. We have expertise in Test Method Development & Feasibility Studies. We focus on non-destructive technologies like Vacuum Decay, MicroCurrent HVLD, Airborne Ultrasound, and Helium Leak Detection for package quality testing.

Readmore...
container closure integrity testing, packaging integrity testing, container closure integrity, cci technologies, ccit
770
29
Jul 2021

Why is Seal Integrity Testing of Medical Device Packaging Important

Why Seal Integrity Testing of Medical Device Packaging is Important

For sterile medical devices, seal integrity testing ensures product efficacy, shelf-life stability, and microbial sterility. Common defects that can threaten the integrity of the seal include voids, wrinkles, dust or other random particles. Hence, inspecting seals after they have been formed is important. Earlier, visual inspection or other destructive testing methods were used for seal quality inspection. However, they lacked accuracy and reliability in test results. But technology is changing. Today, the market offers a range of non-destructive inspection techniques that ensure highly sensitive and reliable seal quality inspection. Even then, the suitability depends on the type of packaging and the size of defect that needs to be inspected.

Relevance of Airborne Ultrasound Technology in Seal Quality Inspection

Airborne Ultrasound technology is a non-destructive container closure integrity testing method, capable of examining seal quality for defects. Such tests are mainly conducted to provide enhanced seal quality inspection of pouches, flexible packages and tray seals. Airborne Ultrasound technology ensures in-depth seal quality analyses and is applicable for multiple packaging materials Tyvek, paper, foil, film, aluminium, plastic and poly. It is an ASTM Test Method F3004 and FDA recognized standard for seal quality testing. According to Oliver Stauffer, CEO of PTI-Packaging Technologies & Inspection, “Ultrasound is one of the only technologies that are telling us what the quality of that physical bonded nature of the seal materials are.”

Under this technology, ultrasound waves are passed through the package seal which causes reflections of sound waves. The signal strength is reduced or eliminated in the presence of a leak/ defect. Such variations are closely observed to identify the leak. Inability to detect non-leak defects is a common challenge faced by most leak test methods. However, with Airborne Ultrasound technology users can identify various types of seal defects; visible and invisible, leaking and non-leaking, process-related and random.

Latest improvements in Airborne Ultrasound Technology are in the form of Seal Scan (Offline) and Seal-Sensor. Both these technologies utilize non-contact airborne ultrasonic testing technology. Seal-Scan® technology has been proven in the field by several online and offline units installed. With the advancements in form of Seal Scan and Seal-Sensor, Airborne Ultrasound technology has been proven to be the most effective method for non-destructive seal integrity testing.

Benefits of Airborne Ultrasound technology

  • Deterministic seal quality inspection technique that assures quantitative and reliable results.
  • Applicable for multiple material types and combinations regardless of color, transparency, print, surface finish or porosity.
  • Eliminates subjective manual inspection methods.
  • Non-destructive, non-subjective, no sample preparation
  • Technology can be integrated for 100% online defect detection of the final pouch seal.
Readmore...
container closure integrity testing, airborne ultrasound technology, medical device testing, ccit
2760
02
Jul 2021

How have VeriPac Systems Raised Standards for Container Closure Integrity Testing?

How have VeriPac Systems Raised Standards for Container Closure Integrity Testing

What is Container Closure Integrity Testing?

Container Closure Integrity Testing can be understood as a leak detection test conducted using non-destructive package inspection systems to ensure product stability throughout its shelf life. CCIT plays a major part in ensuring that the products are free from possible contamination. While there are multiple ways to conduct a CCI test, it can be broadly classified into probabilistic and deterministic test methods. Traditional test methods like bubble test, dye ingress and microbial challenge by immersion come under probabilistic test methods. However, upon realizing that such tests lacked accuracy and reliability, The United States Pharmacopeia released guidelines in 2016 stating that deterministic methods ae preferred over probabilistic test methods. Vacuum Decay technology and Airborne Ultrasound technology are among the most preferred deterministic test methods.

VeriPac Test Systems for Effective CCI Testing

The VeriPac test methods are non-destructive, non-invasive inspection system for CCI and package integrity testing. They utilize the ASTM approved patented vacuum decay leak test method recognized by the FDA as a consensus standard for package integrity testing.

This ASTM method was developed using VeriPac leak test instruments and has proven its capabilities under GMP regulatory guidelines. Applications for VeriPac technology include stability studies, clinical trials, quality assurance testing and statistical process control (SPC). VeriPac testers feature the patented PERMA-Vac manifold system and dynamic test modes that provide the ability to test a wide range of package formats. Leak detection of high-risk applications requires the highest level of test measurement reliability. The VeriPac series have redefined the reliability and accuracy of test measurement systems.

How do Veripac Test systems Operate?

VeriPac leak testers connect to a test chamber that is specially designed to contain the package to be tested. The package is placed inside the test chamber to which vacuum is applied. The single or dual vacuum transducer technology is used to monitor the test chamber for both the level of vacuum as well as the change in vacuum over a predetermined test time. The changes in absolute and differential vacuum indicate the presence of leaks and defects within the package. Test systems can be designed for manual or automatic operation. This inspection method is suitable for laboratory offline testing and production applications for QA/QC statistical process control. The test cycle takes only a few seconds, is non-invasive and non-destructive to both product and package, making it an ideal choice for CCI inspection across industries.

Inspection Criteria

  • Seal quality testing of entire container or package
  • Measures and verifies container closure system integrity
  • Tests for gas leaks for dry products (lyophilized vials, powder filled)
  • Tests for liquid leaks (liquid filled vials, pre-filled syringes)
Readmore...
seal quality inspection, vacuum decay technology, ccit, container closure integrity
602
03
Jun 2021

Vacuum Decay Technology-A Novel Solution for Nutritional Packaging Inspection

Vacuum Decay Technology-A Novel Solution for Nutritional Packaging Inspection

In today's world, with the popularity of health products continuing to rise, manufacturers must ensure products are packed properly. Because of this reason, the universal health-wise regulation has set a fixed standard for nutritional products packaging process. This is for the elimination of defects happening due to innate chemical reactions within the nutritional products. Such defects can expose products to oxygen, moisture or bacteria- compromising its quality and reducing shelf life.

Nutritional products including dairy products and protein powders are mostly shelf stable in nature. The high fat content in dairy products including cream, butter and ghee is prone to deterioration in its storage process, causing auto-oxidative reactions. The defects in the dairy products can be eliminated through proper nutritional packaging inspection only. Similarly, protein-based powders including soy and casein are extensively used as energy sources. Inefficiencies in packaging of such products can have an adverse effect on consumer’s health. Therefore, conducting package integrity testing of nutritional products are vital to eliminate defects in packaging as well as possibility of product contamination.

Vacuum Decay Technology – The Ideal Nutritional Packaging Inspection Solution

Vacuum Decay technology is a deterministic Container Closure Integrity test method for evaluating quality of nutritional product packaging. The non-destructive testing method improves quality of packaging and reduces wastage compared to destructive test methods. Cost-effective non-destructive testing results in higher return on investments and ensures quality of products.

Vacuum Decay technology operates by placing sample packages in a closely fitting evacuation test chamber, with an external vacuum source. A single or dual vacuum transducer technology monitors the test chamber over a predetermined test period. The changes occurring in vacuum levels are analyzed to identify leaks and defects within the package. CCIT’s VeriPac series helps in detecting small leaks before it becomes critical in quality abbreviations.

Benefits of Vacuum Decay technology

  • Non-destructive package inspection technology
  • ASTM Test Method F2338, FDA Consensus Standard and referenced in USP 1207 Guidelines
  • Accurate, reliable and repeatable test results.
  • Pass/fail results backed by quantitative test data.
  • Completely tool-less with no changeover to test different packaging formats.
  • Eliminates the need for destructive, subjective testing methods.
Readmore...
container closure integrity testing methods, vacuum decay technology, package integrity testing, ccit
632

Popular Blogs

Tags

CCIT for Pharmaceutical Package Integrity

Jul 23, 2021   |   3077

Container Closure Integrity Testing of pharmaceutical packaging ensures that the products remain intact throughout its shelf life or until it reaches the end user.

Techniques Involved in Leak Testing Vials

Sep 06, 2022   |   2831

Most common methods for leak testing vials include MicroCurrent HVLD Technology, Helium Leak Testing and Vacuum Decay Technology.

Why is Seal Integrity Testing of Medical Device Packaging Important

Jul 29, 2021   |   2760

For sterile medical devices, seal integrity testing ensures product efficacy, shelf-life stability, and microbial sterility. Airborne Ultrasound technology is a non-destructive Container Closure Integrity test method, capable of examining seal quality for defects.

A Guide to MicroCurrent HVLD Technology

Aug 05, 2021   |   2689

In the case of parenteral drug product containers, HVLD technology is ideal for CCI testing in cases where packaging is less conductive than the liquid within.

Everything You Need to Know About Vacuum Decay Technology

Sep 09, 2022   |   2624

Vacuum Decay technology is the ideal non-destructive solution for container closure integrity determination for many package formats.
Popup