--> --> -->

Blogs

01
Mar 2023

Package Integrity Testing of MAP (Modified Atmosphere Packaging) Using VeriPac Series

Package Integrity Testing of MAP (Modified Atmosphere Packaging) Using VeriPac Series

Meat processors are relying on technologies to extend product shelf life more than ever before, which puts concerns like shelf-life stability and packaging quality to the forefront of challenges. Although meat-based snack products and pet products come in a variety of packaging formats, they all require package integrity assurance/container closure integrity testing for extended shelf life.

Flexible packaging, particularly pre-made pouches and form-fill-seal pouches and bags, is the most preferred format for meat-based snack foods and pet food products. With its capacity to provide shelf stability and ease of opening, flexible packaging makes for the best package appearance. The market for meat products for animals has grown rapidly, as consumers are willing to spend more and demand higher-quality products. Meat snacks intended for animal consumption as well as human use must be free of mold or product deterioration.

Modified Atmosphere Packaging (MAP) tray packs are a common packaging option for fresh beef, hog, and poultry products as well as many other processed meats. By significantly reducing spoilage and extending shelf life, the MAP method provides consumers with fresh items that look good. Once an MAP package is sealed, it is essential to maintain the seal integrity to avoid leaks that can let O2 or other environmental pollutants enter the package.

Explain MAP

Modified Atmosphere Packaging (MAP), which can detect leaks as small as 10 microns, is widely used for perishable products. Package integrity can be tested by monitoring the amount of residual oxygen in the headspace of the package. According to the method, the product must be set up for stability and the headspace must be measured at various time intervals. The six-day test, which frequently measures O2 levels over the maximum threshold (about 3%), is used for production purposes. A 50-micron defect significantly reduces a product's shelf life, but it typically passes a six-day O2 test with flying colors. Six days of output are already palletized and stored in case the O2 test identifies a quality issue. Vacuum Decay can find breaches as small as 10 microns, detect oxygen-critical defects in real time at the source, and prevent extensive quality issues.

VeriPac Series for Testing MAP Meat Packages

The VeriPac Vacuum Decay Series of inspection systems have a proven capacity to non-destructively test packaging down to O2 sensitive leak sizes, which reduces waste and enhances testing capabilities. By consistently detecting leakage as tiny as 10 microns, the technology may identify process issues before they become critical. VeriPac offers quantitative data that is correlated to leak rate and leak size in addition to a clear attribute result (PASS or FAIL).

The VeriPac D-Series uses a revolutionary FLEX-Chamber to test flexible packaging formats since it is resistant to package changes and removes the requirement for changeover when testing different size pouches. Additionally, more than one package may be tested during a single test cycle. The VeriPac Series utilizes a rigid packaging test chamber for MAP Meat Tray Package testing. Depending on the needs of the production, the test system operation can be set up for either semi-automatic or manual operation.

Advantages of VeriPac Series

  • Non-destructive, no sample preparation.
  • Deterministic, quantitative test method.
  • Defect detection down to 0.2 ccm.
  • High level of sensitivity, repeatability and accuracy.
  • Short cycle time provides operators with PASS/FAIL results.
  • Small footprint and modular portable design.
  • ASTM test method and FDA standard.
  • Referenced in USP 1207 guidance.

Since it eliminates subjective results, the VeriPac series is a practical alternative to destructive testing. Case studies have proven that Vacuum decay leak testing technology offers a rapid return on investment when evaluating the dramatic decrease in waste created by destructive test techniques.

Readmore...
package integrity test solutions, container closure integrity testing, container closure integrity, vacuum decay leak testing, ccit
559
20
Sep 2022

Package Integrity Testing Systems for Porous Packaging

Package Integrity Testing Systems for Porous Packaging

For packaging sterile devices in the medical industry, porous packaging materials are widely used. The sterile products are frequently packaged, shipped, and distributed to multiple places, where they may be exposed to a range of humidity conditions during the course of the distribution cycle. The leaks in the porous packaging materials can contaminate medical devices as well as products. These leaks are frequently observed at tiny pinholes or breaches in the seals between packing components. Hence, maintaining the microbial barrier of sterile medical devices is of grave importance. In order to maintain the sterility and microbial barrier, various package integrity test solutions can be used. Airborne Ultrasound technology is one such method.

Airborne Ultrasound Technology Overview

Airborne ultrasound is an inspection method for testing seal quality that is able to evaluate seals for defects without causing any damage. It is an FDA recognized standard and ASTM Test Method F3004 for testing seal quality. Such tests are mostly carried out to provide enhanced tray seals, flexible packages, and pouch seal quality inspection. Tyvek®, paper, foil, film, aluminum, plastic, and poly are just a few of the packaging materials that may be used with Airborne Ultrasound technology to ensure in-depth seal quality analyses.

Integrity Testing of Porous Packages using Airborne Ultrasound Technology

Airborne Ultrasound technology is one of the commonly used methods for testing the seal quality of porous packages. In this technique, sound waves are reflected when ultrasound waves pass through the packaging seal. The signal intensity is reduced or destroyed when there is a leak or defect. These variations are meticulously monitored to identify defects. With airborne ultrasound technology, it’s now possible to identify a variety of seal defects, including visible and invisible, leaking and non-leaking, process-related and random both offline in the lab and in automated production environment.

Airborne Ultrasound technology has been proven in the field with both online (Seal-Sensor) and offline (Seal-Scan) solution options. Both of these technologies make use of non-contact airborne ultrasonic testing. It is known to be among the best techniques for non-destructive testing of flexible packaging seals in both offline laboratory testing for seal quality analysis and 100% inline testing on the production line. According to ASTM F3004-13, this is the standard test procedure for the airborne ultrasound evaluation of seal quality and integrity.

Benefits of Seal-Scan and Seal-Sensor Methods

  • Deterministic seal quality inspection method that produces quantitative outcomes.
  • Regardless of color, transparency, print, surface polish, or porosity, this method works for all material types and combinations.
  • Non-destructive and non-subjective test technique that does not require any sample preparation.
  • Technology may be used for 100% online final pouch seal defect detection.
  • Seal quality inspection results are repeatable, reproducible and reliable.
  • Cost-effective solution for testing seal integrity and seal analysis that characterizes the overall quality and uniformity of the seal.

According to studies, the conventional seal inspection techniques are ineffective because they miss undetectable flaws and wrongly reject pouches that are tightly sealed. Airborne Ultrasound is a deterministic seal quality testing method. The technology has established itself as a highly practical solution for non-destructive testing of porous packages. The integrity of porous packages can be tested efficiently using Airborne Ultrasound technology.

Readmore...
package integrity test solutions, seal quality testing, airborne ultrasound, container closure integrity, cci technologies
1555
09
Sep 2022

Everything You Need to Know About Vacuum Decay Technology

Everything You Need to Know About Vacuum Decay Technology

To assure the safety of pharmaceutical products, during their distribution and storage, manufacturers perform Container Closure Integrity testing (CCI testing). CCIT helps in evaluating the integrity and stability of packaging or containers till they reach their destination. Although destructive CCI techniques such as water bath, and dye tests can find leaks, they are time-consuming, inaccurate, and provide subjective test results. Furthermore, they cause considerable product loss and waste. This leads to an increase in the demand for non-destructive deterministic CCI methods such as Vacuum Decay, MicroCurrent HVLD and Airborne Ultrasound.

Vacuum Decay is a non-destructive CCI testing method that focuses on package integrity and leak path detection. Unlike manual inspection and other non-deterministic testing techniques, Vacuum Decay provides quantitative, deterministic, and accurate test results to assure package integrity. Vacuum Decay technology can handle a wide range of package types, including filled and sealed rigid, semi-rigid, and flexible packaging comprised of non-porous or porous materials.

Technology Overview

The Vacuum Decay method operates by enclosing sample packages in a tightly fitted evacuation test chamber with an external vacuum source. The test chamber is monitored using single or dual vacuum transducer technology for both the level of vacuum and the change in a vacuum throughout a defined test duration. The existence of leaks and defects inside the package is indicated by variations in an absolute and differential vacuum. This inspection method is suitable for offline laboratory testing and can be customized for manual or completely automated operations. The test cycle is non-destructive to both the product and the packaging and only takes a few seconds. It saves money by not wasting products for leak tests and produces a return on investment in less than 6 months for many products.

VeriPac Vacuum Decay Technology

VeriPac Vacuum Decay technology is the optimal non-destructive solution for determining container closure integrity in a variety of package configurations. VeriPac Series will evaluate a wide range of high-risk packaging applications and ensure that the product fulfills regulatory and consumer integrity standards. The VeriPac product line systems analyze the package in a quick, repeatable, and reproducible way, providing quantitative and deterministic test results. Vacuum Decay technologies can identify package leaks and invisible defects utilizing a non-invasive, non-subjective technique that does not need sample preparation.

The VeriPac Series is a practical alternative to destructive testing methods and can detect leaks down to sub-micron levels. An appropriate VeriPac model is chosen based on the type of package and leak test sensitivity required. Configurations can be optimized and tailored to specific applications.

Vacuum Decay Technology Merits
  • Non-destructive technology
  • Defect detection down to 0.05 ccm
  • Accurate, reliable, and repeatable results
  • Pass/fail results backed by quantitative test data
  • No tools are required to evaluate alternative package formats
  • Identifies which cavity is defective
  • Eliminates destructive, subjective testing methods
  • Supports sustainable packaging and zero waste initiatives
  • FDA recognized standard for package integrity testing

Over the years, Vacuum Decay leak testing has proven to be one of the most practical and sensitive vacuum-based leak detection technologies. Vacuum Decay technology is recognized by the American Standard Testing Method ASTM F2338 and detects leaks in hermetically sealed containers, making it useful for both the pharmaceutical and medical device industries.

Readmore...
container closure integrity testing, vacuum decay leak testing, cci technologies, pharmaceutical package testing, package integrity test solutions
2623
08
Feb 2022

Understanding CCIT's Seal-Scan Technology

Understanding CCIT's Seal-Scan Technology

Package integrity leak test methods offered by CCIT such as Seal-Scan utilize non-contact Airborne Ultrasonic technology for seal integrity testing and seal quality analysis of pouches and flexible packaging. The method is applicable to pharmaceutical as well as medical device packaging.

Seal Quality Testing and Seal Analysis using Seal-Scan Technology

Seal-Scan® is a non-destructive offline inspection and analysis technique for pouch seals using Airborne Ultrasonic technology (ABUS). Seal-Scan® offers advanced digital imaging software tools for process control, including in-depth seal quality inspection. Seal-Scan system uses the non-destructive ASTM Test Method F3004-13 for "Evaluation of Seal Quality and Integrity Using Airborne Ultrasound Technology." This test method was approved using PTI's ABUS technology. Seal-Scan® is a deterministic, quantitative, high-resolution technology for inspecting pouch seals for defects and ensuring seal integrity.

Seal-Scan has two scanning modes:

  • Linear Scan (L-Scan) to simulate online defect identification (line graph)
  • C-Scan for detailed seal analysis, resulting in pixel-by-pixel seal evaluation (Opto-Acoustic image)

Technology Overview

The pouch seal or packaging material is scanned between two focused ultrasonic sensors. Ultrasonic waves travel through single or several layers of bonded materials. The reflection of sound waves caused by ultrasonic transmission via different materials reduces/eliminates signal intensity. The signal level that passes through the seal is a function of the seal's quality. Defects of various forms, such as leaking and non-leaking, process-related and random, can be detected. Seal-Scan® can provide Opto-Acoustic images as well as thorough statistical analysis using one of two scan modes (L-Scan and C-Scan).

An L-Scan is a single linear scan along the seal's X-axis that generates a line graph of seal integrity and replicates real-time inspection. C-Scan generates a series of scans (along the X and Y-axis of the seal region), that offers a high-resolution ultrasonic image of the seal structure. This technology, via the Seal-Sensor, can be integrated into a pouch production process for 100% online seal defect detection.

Benefits of Seal-Scan Technology

  • Deterministic inspection approach yielding quantitative results.
  • Works with any material and combination, independent of color, transparency, print, surface polish, or porosity.
  • Produces a high-resolution Opto-Acoustic seal image.
  • Characterizes the overall quality and consistency of the seal.

Seal-Scan® is a semi-automatic inspection system with an x-y drive that is used to identify seal defects, characterize seals, and analyze materials. This approach is non-invasive, non-destructive, and does not need any sample preparation. The ability of PTI to adapt this technology to diverse production restrictions and conditions makes it an effective solution for flexible packaging systems.

Readmore...
seal quality inspection, airborne ultrasound, container closure integrity, cci technologies, package integrity test solutions
484
03
Feb 2022

Package Integrity Testing of Flexible Packages Using VeriPac FLEX Series

Package Integrity Testing of Flexible Packages Using VeriPac FLEX Series

The physical ability of a package to protect its contents with the necessary level of protection during a specific time is referred to as package integrity. Package integrity tests are performed to detect packaging issues that might affect the sterility of a medical device. Previously, microbial challenge or dye penetration testing was used to determine whether the product packaging has maintained its microbial barrier qualities. Due to technological advancements, VeriPac FLEX systems are currently being used for testing the package integrity of flexible packages.

VeriPac FLEX Systems to Ensure the Integrity of Flexible Packages

CCIT’s VeriPac FLEX systems are versatile non-destructive package inspection systems that are intended particularly for evaluating dry-filled pouches and flexible packaging. VeriPac FLEX systems are available in several configurations for both the leak test instrument and the test chamber capacity to accommodate various package specifications and test sensitivity requirements. VeriPac inspection systems provide a simple PASS or FAIL result, as well as quantitative test data. They offer unparalleled sensitivity, reliability, and practicality in testing a wide variety of flexible package formats and sizes, without changing settings or tools.

The ASTM technique for vacuum decay leak testing (F2338), which is specified in ISO 11607 and recognized by the FDA as a consensus standard for package integrity test solutions, is used by VeriPac FLEX Systems. As an alternative to destructive testing, they eliminate subjectivity while also reducing waste and cost. When compared to destructive techniques like water bath or blue dye leak test, vacuum decay leak testing technology has proven to provide a quick return on investment. The VeriPac test devices consistently detect significant packaging errors and provide useful packaging process information.

Technology Overview

On the basis of the package size, the VeriPac tester is initially attached to the appropriate FLEX chamber. The Integrated Flexible test Chamber (IFC) and Drawer Style test chamber (D-Series) are the two test chamber configurations available to connect with the VeriPac instrument depending on package specification and test sensitivity requirements. The Integrated Flexible test Chamber (IFC) is designed for low-headspace sachets or stick packs. Depending on the package size and requirements, the Drawer Style test chamber (D-Series) is available in 2 basic sizes: Small (D) and Large (DXL). Custom designs are possible for large packaging types and bulk products. The way the package is tested is what sets VeriPac FLEX systems apart. CCIT makes use of a flexible membrane that fits the shape and size of the package, preventing stress and damage to the film materials. In a single test cycle, several packages can be tested.

VeriPac FLEX System Advantages

  • Non-destructive, non-subjective, no sample preparation
  • Cost-effective with rapid return on investment
  • Accurate and repeatable results
  • USP< 1207> compliant
  • Supports sustainable packaging and zero waste initiatives
  • ASTM test method and FDA standard
  • Deterministic, quantitative test method
  • Simplifies the inspection and validation process

Manufacturers are still struggling with quality standards for flexible packaging. CCIT’s VeriPac FLEX has proven to minimize manufacturing waste and costs while boosting package quality assurance and brand value. It has high test sensitivity and is capable of identifying micro leaks down to the single digit micron range.

Readmore...
package integrity, package integrity test solutions, cci technologies, ccit, container closure integrity
514
27
Jan 2022

A Quick Rundown on Package Inspection Guidelines for Sterile Medical Products

A Quick Rundown on Package Inspection Guidelines for Sterile Medical Products

Class III medical devices have a unique combination of criteria and package features that necessitate a comprehensive approach to determining the best inspection procedures. For medical package inspection, there are a variety of methods that require a thorough understanding to assure quality.

Manual visual inspection has been the most common form of inspection for medical device packaging. While an ASTM standard (ASTM F1886) covers this concept, it may not be applicable for all applications and has limitations. Even though a 75-micron channel defect can be detected by manual visual inspection, the ASTM method F1886 indicates that the chance of detection ranges from 60% to 100%. This vast range of uncertainty does not give the level of assurance required for the packaging of high-risk medical devices.

Although certain offline leak detection techniques can offer a quantitative evaluation of seal quality, they miss some of the most prevalent seal problems seen in Class III medical device packaging. Testing peel strength or utilizing other destructive methods will not reveal random seal problems. For class III medical devices, online non-destructive inspection procedures are excellent since they provide quality control with comprehensive manufacturing lot data.

All Class III medical devices must be sterile, however, container materials and design differ widely. A non-porous pouch or tray demands an entirely different technique than a porous pouch or tray. Tyvek® offers a sterile barrier, and the porosity of the material limits the leak test procedures that may be used on the package body. When it comes to porous packaging, the focus of online inspection moves away from leak detection and toward seal quality evaluation.

Technology Overview

Vacuum decay and Airborne ultrasound are the two main methods used by PTI/CCIT to inspect medical device packaging. Both methods are aimed at providing quantitative and deterministic test results in order to assess package quality. In terms of function and performance, the two technologies are entirely different. Package integrity and leak path detection are the main objectives of Vacuum decay. Meanwhile, Airborne ultrasound technology focuses on package seal inspection and seal quality. Both approaches aim to meet the basic requirements of being reliable and sensitive inspection procedures for Class III medical device applications.

Vacuum Decay (ASTM F2338)

Vacuum decay is the most practical and sensitive vacuum-based leak test method of CCI. When testing pouches, a versatile adjustable test chamber may be utilized to test pouches of various sizes. The package is then placed into the vacuum-sealed test chamber. The level of vacuum, as well as the change in vacuum during a pre-defined test duration, are both monitored during the short test cycle. The change in vacuum indicates the existence of leaks and defects within the package. Vacuum decay leak testing is a go-to standard for sterile products because of its sensitivity and dependability. The approach is ideal for laboratory offline testing and production applications for quality assurance process control, since test equipment may be developed for manual or automation operation.

The ASTM Vacuum decay leak test technique (F2338), which has been accepted by the FDA as a consensus standard for package integrity testing, was developed using PTI VeriPac technology. As a deterministic test technique for package integrity test solutions, Vacuum decay is mentioned in ISO 11607 and the new USP 1207 guideline document.

Airborne Ultrasound (ASTM F3004)

Airborne Ultrasound is an ASTM Test Method F3004-13 and is one of the most effective methods for non-destructive seal quality inspection of flexible packaging. It is mentioned in ISO 11607 and the new USP 1207 guidance document. Most inspection methods are challenged by the leaking nature of porous packaging, but Airborne ultrasound, with its non-destructive measure of seal quality, effectively overcomes those challenges.

The non-contact Airborne ultrasonic testing technique is used in both Seal-Scan (Offline) and Seal-Sensor (Online). Ultrasonic waves propagate through the material as a package seal passes through the sensor head, producing sound waves to be reflected. When defects are encountered, the signal intensity is reduced or eliminated. The larger the acoustic gap between mediums, the more sound is reflected and less sound is transferred through the seal.

The variety of package forms and materials makes inspecting the integrity of class III medical device packaging a challenge. CCIT's scientists and engineers have vast industry experience and can prove a complete solution, including test method development and equipment validation for Class III medical device packaging.

Readmore...
package integrity test solutions, vacuum decay leak testing, container closure integrity testing, container closure integrity, cci technologies
775

Popular Blogs

Tags

CCIT for Pharmaceutical Package Integrity

Jul 23, 2021   |   3077

Container Closure Integrity Testing of pharmaceutical packaging ensures that the products remain intact throughout its shelf life or until it reaches the end user.

Techniques Involved in Leak Testing Vials

Sep 06, 2022   |   2831

Most common methods for leak testing vials include MicroCurrent HVLD Technology, Helium Leak Testing and Vacuum Decay Technology.

Why is Seal Integrity Testing of Medical Device Packaging Important

Jul 29, 2021   |   2760

For sterile medical devices, seal integrity testing ensures product efficacy, shelf-life stability, and microbial sterility. Airborne Ultrasound technology is a non-destructive Container Closure Integrity test method, capable of examining seal quality for defects.

A Guide to MicroCurrent HVLD Technology

Aug 05, 2021   |   2689

In the case of parenteral drug product containers, HVLD technology is ideal for CCI testing in cases where packaging is less conductive than the liquid within.

Everything You Need to Know About Vacuum Decay Technology

Sep 09, 2022   |   2623

Vacuum Decay technology is the ideal non-destructive solution for container closure integrity determination for many package formats.
Popup