--> --> -->

Blogs

23
Aug 2024

CCIT Advanced Testing Services: A Comprehensive Overview

CCIT Advanced Testing Services: A Comprehensive Overview

In the dynamic and highly regulated world of pharmaceuticals, biotechnology, and medical devices, ensuring the integrity of product packaging is vital for maintaining safety and compliance. Container Closure Integrity Testing (CCIT) play a crucial role in verifying that packaging systems effectively safeguard products from contamination, leakage, and environmental factors. From initial feasibility studies to the development of precise test methods, and from stability testing to specialized helium leak detection, these services provide essential insights into the effectiveness of packaging solutions. By leveraging advanced technologies and methodologies, CCIT ensure products remain protected and meet stringent regulatory standards throughout their lifecycle.

Advanced Laboratory Testing Services

CCI testing services provide a comprehensive suite of solutions designed to assess and verify the integrity of packaging systems. Our CCI testing services encompass a range of specialized offerings, including:

Feasibility Studies: These experimental studies are the first step in determining the most suitable inspection technology and test method for a specific application. Our feasibility studies are backed by detailed reporting and comprehensive test result data, providing a solid foundation for subsequent testing and validation.

Test Method Development Support: Our services include the development and documentation of test methods, including advanced initial recipe creation, container qualification, and system suitability testing. We provide thorough testing and documentation to ensure the accuracy and reliability of test methods.

Stability Testing: This service ensures that products maintain container closure integrity throughout their stability period. Stability testing is crucial for verifying that packaging continues to protect the product over time, under various storage conditions.

Recall & Batch Release Testing: Designed for recalled products, products on hold, and batch release, this service provides critical testing to ensure product integrity and compliance before market release.

Helium Testing Services: Helium testing is used for a variety of purposes, including R&D work, component/material selection, packaging equipment qualification, and ongoing quality monitoring. Our helium testing services cover:

  • Cold storage testing at temperatures ranging from -0°C to -160°C.
  • Helium pre-filled and 100% Helium Flow Method testing.
  • Compliance with USP 1207 standards.
  • Testing for parenteral formats, blister cards, pouches/sachets, and various industrial applications.
  • Package validation, component selection, stability sample testing, and R&D studies.

All leak testing is conducted in a non-GMP environment, ensuring flexibility and efficiency in testing procedures. Our CCI testing services are designed to meet the unique needs of each client, providing reliable and accurate results that support product quality and safety. These services are not just a regulatory requirement but a fundamental component of a commitment to quality and safety in product development and manufacturing.

Readmore...
cci testing, container closure integrity testing, container closure integrity
213
20
Aug 2024

A Closer Look at Various E-Scan MicroCurrent HVLD Series

A Closer Look at Various E-Scan MicroCurrent HVLD Series

Ensuring the integrity of container closures is a critical aspect of pharmaceutical and medical product safety. Container Closure Integrity Testing (CCIT) is essential to confirm that containers such as vials, syringes, and ampoules maintain their seal and protect the contents from contamination throughout their shelf life.

E-Scan MicroCurrent High Voltage Leak Detection (HVLD) technology has emerged as the optimal solution in advancing CCIT methodologies. E-Scan MicroCurrent HVLD technology significantly enhances container closure integrity testing by providing accurate, non-destructive, and efficient solutions. Its integration into CCIT processes helps ensure that pharmaceutical and medical products are safe, reliable, and of the highest quality.

MicroCurrent HVLD for Pharmaceutical Package Testing

MicroCurrent HVLD is a non-destructive method for evaluating the integrity of container closures in non-porous pharmaceutical and parenteral products. This technique utilizes low electrical current to detect leaks in various liquid-filled products, including those with extremely low conductivity such as sterile water for injection (WFI) and products containing proteins or suspensions. Unlike conventional HVLD technology, MicroCurrent HVLD reduces product voltage exposure to less than 5%, eliminating any potential risk to the product and reducing ozone formation during testing.

In this method, high voltage probes scan the container. One side is subjected to high voltage, while a ground probe is attached to the other side. If the container is intact, both sides offer complete electrical resistance, and no significant current passes through. However, if a micro-leak or fracture is present, resistance breaks down, allowing current to flow through the defect. HVLD is unique among leak detection methods as it does not require mass to pass through the defect site; instead, it transmits electricity through the crack.

E-Scan Technologies: E-Scan 605, E-Scan 615, E-Scan 655, E-Scan RTX

E-Scan 605: E-Scan 605 is designed for non-destructive evaluation of container closure integrity in pharmaceutical and parenteral products. Its rapid testing capabilities make it a cost-effective and efficient solution for ensuring the integrity of parenterals.

E-Scan 615: E-Scan 615 is designed to handle a wider range of product types and configurations, making it suitable for more complex testing scenarios. It ensures accurate detection of leaks, providing high levels of safety and quality assurance for pharmaceutical packaging. With its easy operator HMI screen, the E-Scan 615 enhances workflow efficiency.

E-Scan 655: E-Scan 655 is the advanced analytical version in the E-Scan series, offering enhanced capabilities for container closure integrity testing. It uses state-of-the-art MicroCurrent HVLD technology to provide highly accurate leak detection across a broad spectrum of pharmaceutical and parenteral products. The E-Scan 655 is equipped with advanced features for handling diverse product sizes and shapes, ensuring comprehensive testing coverage.

E-Scan RTX: E-Scan RTX represents the latest innovation in the E-Scan product line, offering a comprehensive technology for automated container closure integrity testing. It incorporates advanced MicroCurrent HVLD techniques with automated pick & place of pre-filled syringes. Its intuitive interface and automated testing capabilities make it a powerful tool for ensuring the highest standards of product integrity and safety of pre-filled syringes.

E-Scan MicroCurrent HVLD Series offers a powerful solution for parenteral container closure integrity testing. Its advanced technology, combined with its non-destructive nature, reduced voltage exposure, and automation features, ensures high-quality, reliable testing results. By integrating these systems into CCIT processes, pharmaceutical and medical industries can uphold the highest standards of product safety and efficacy.

Readmore...
hvld, container closure integrity testing, container closure integrity
207
12
Aug 2024

Ensuring Sterility and Efficacy: CCI Testing for Biologics Packaging

Ensuring Sterility and Efficacy: CCI Testing for Biologics Packaging

In the rapidly evolving field of biologics, maintaining container closure integrity is essential for product safety, regulatory compliance, and overall efficacy. By employing advanced CCI testing methods, manufacturers can ensure their packaging systems provide robust protection for sensitive biologic products, ultimately contributing to better patient outcomes and advancing the field of pharmaceutical science. As the demand for biologics continue to grow, the importance of rigorous CCI testing will only become more pronounced, underscoring the need for continued innovation and adherence to best practices in packaging integrity.

Importance of Maintaining Sterility and Efficacy in Biologic Products

Biologic products, which include vaccines, monoclonal antibodies, and therapeutic proteins, are essential in treating a wide range of diseases. Ensuring their sterility and efficacy is vital for several reasons:

  • Patient Safety: Sterility is critical to prevent contamination by harmful microorganisms, which can lead to severe infections or adverse reactions. A lapse in sterility can compromise patient safety, potentially causing serious health issues.
  • Product Integrity: Maintaining both sterility and efficacy is essential for the product’s overall quality and reliability. Consistent quality reassures healthcare providers and patients, reinforcing trust in the therapy and supporting its widespread adoption.
  • Minimizing Risks: Ensuring that biologic products are sterile and effective minimizes the risk of treatment failures and associated complications. This contributes to better patient outcomes and enhances the overall success of therapeutic interventions.

Prioritizing these factors supports the successful application of biologic therapies and upholds the high standards required in the biotechnology industry.

Package Integrity Solutions for Biologics Packaging

Helium Leak Detection Technology

Helium leak testing detects leaks in sealed systems by using helium as a tracer gas and measuring its escape. This method provides highly accurate leak rate data, surpassing other techniques. It is particularly effective for evaluating the integrity of pharmaceutical and parenteral packaging. The process involves filling the package with helium, applying a vacuum, and using a detector to measure the escaping helium, determining the leak rate. This technology is crucial for package design, failure analysis, tooling qualification, packaging line validation, and quality monitoring.

For cold storage CCI applications, helium is a highly sensitive and reliable technology for assessing the performance of vials, syringes, and cartridges at cryogenic temperatures.

MicroCurrent HVLD Technology

MicroCurrent HVLD technology is an innovative High Voltage Leak Detection method for container closure integrity testing (CCIT), proving highly effective for a wide range of applications including pre-filled syringes, vials, cartridges, ampoules, BFS, bottles, and pouches. This non-destructive, non-invasive technology uses approximately 50% less voltage, exposing the product and environment to less than 5% of the voltage compared to conventional HVLD solutions. It stands as one of the most effective CCI technologies for all parenteral and biological products.

To ensure Container Closure Integrity, the method uses electrode probes to scan a non-conductive sealed container. Defects in the package cause a resistance differential, altering the current flow within the container. The MicroCurrent HVLD test method can accurately detect and locate defects such as pinholes, micro-cracks, stopper/plunger leaks, non-visible leaks under crimping, and more.

Advanced CCI testing methods, including Vacuum Decay and MicroCurrent HVLD, offer diverse and highly accurate solutions for detecting potential leaks and defects. By employing these techniques and adhering to best practices, manufacturers can ensure that their packaging systems effectively preserve the quality and safety of biologic products, ultimately enhancing patient outcomes and advancing the pharmaceutical industry.

Readmore...
helium leak testing, container closure integrity, container closure integrity testing
250
09
Aug 2024

Improving Nutraceutical Product Shelf Life with Seal-Sensor Technology

Improving Nutraceutical Product Shelf Life with Seal-Sensor Technology

In the rapidly growing nutraceutical industry, ensuring the longevity and quality of products is crucial for maintaining consumer trust and market competitiveness. One of the essential factors in preserving product integrity is effective packaging, which protects contents from environmental factors that can lead to spoilage and degradation. Advanced packaging technologies and rigorous testing methods are essential for enhancing the shelf life of these products, ensuring they remain fresh, safe, and effective for consumers over extended periods. The Seal-Sensor technology offers a revolutionary solution for enhancing the shelf life of nutraceutical products through advanced seal inspection capabilities.

Importance of Package Testing in Extending Product Shelf Life

In today's competitive market, ensuring the longevity and quality of products is paramount. One of the critical aspects of maintaining product integrity and extending shelf life is packaging. Packaging not only serves as a container for products but also acts as a barrier against environmental factors that can degrade product quality. This makes package testing a vital process in product development and distribution phases.

Package testing involves a series of assessments designed to evaluate the durability, integrity, and effectiveness of packaging materials under various conditions. These tests simulate real-world scenarios, such as transportation stresses, temperature fluctuations, and exposure to moisture and oxygen, to ensure that the packaging can protect the product throughout its intended shelf life.

The significance of package testing in extending product shelf life cannot be overstated. It helps manufacturers identify potential weaknesses in packaging materials and design, allowing for improvements that can prevent spoilage, contamination, and degradation. This not only enhances the consumer experience by ensuring that products remain fresh and safe for longer periods but also reduces waste and increases cost-efficiency for producers.

How Does Seal-Sensor PQX Ensure Packaging Effectiveness?

Seal-Sensor PQX is a cutting-edge automated handling system and pouch seal inspection solution. Engineered for easy integration into production lines, it boasts a variety of advanced features. This technology employs Seal-Sensor airborne ultrasound, which the FDA has recognized as a consensus standard for seal quality inspection according to ASTM Test Method F3004. One of the key advantages of the Seal-Sensor PQX is its capability to perform high-speed online scanning of the final pouch seal. Utilizing rapid linear scans, the system can quickly and effectively verify seal quality, delivering immediate feedback and test results within seconds. This inline inspection feature is especially beneficial for industries where seal integrity is critical, such as food packaging and pharmaceutical manufacturing.

The Seal-Sensor PQX is designed for easy installation with its plug-and-play setup. Its compact size allows it to fit seamlessly into existing production lines without significant modifications. The full-screen Human-Machine Interface (HMI) enables operators to monitor and analyze test results in real time as pouches are scanned, providing instant feedback on seal quality. With inspection rates of up to 350 mm/sec, the Seal-Sensor PQX delivers exceptional throughput, allowing production lines to maintain high output levels without sacrificing seal inspection quality. When defects are detected, the system's built-in reject chute promptly removes faulty pouches from the line, minimizing production disruptions. Additionally, the integrated stack light system makes it easy to identify pass and fail results, enhancing quality control and overall efficiency.

Seal-Sensor PQX technology represents a significant advancement in packaging inspection for the nutraceutical industry. By ensuring the integrity of pouch seals, this innovative solution helps manufacturers extend product shelf life, reduce waste, and maintain the highest standards of quality and safety. Investing in such cutting-edge technology is a strategic move for nutraceutical manufacturers aiming to enhance product longevity, comply with regulatory standards, and meet consumer demands for fresh and reliable health supplements.

Readmore...
seal quality inspection, seal quality testing, airborne ultrasound
194
08
Aug 2024

Innovations in CCI Testing: What’s Next Beyond Blue Dye?

Innovations in CCI Testing: What’s Next Beyond Blue Dye?

In the field of pharmaceutical packaging, the quest for robust Container Closure Integrity (CCI) testing methods has evolved significantly beyond traditional approaches such as blue dye testing. As the industry continues to prioritize safety, efficacy, and regulatory compliance, innovations in CCI testing are poised to redefine standards and practices.

Recent advancements in CCI testing methods are driving a transformative shift towards more sensitive, reliable, and versatile techniques. These innovations are not only enhancing detection capabilities but also addressing the limitations that have historically challenged conventional methods like blue dye testing.

Limitations of Blue Dye Testing

Blue dye testing, a traditional method for leak detection in packaging, has several limitations that make it less favourable compared to more modern techniques. Here are some of the key drawbacks:

  • Destructive testing: The biggest disadvantage is that the test destroys the packaging being tested.
  • Subjectivity: Relying on visual inspection of the packaging for dye presence can be subjective.
  • Limited leak detection: Blue dye tests are not very sensitive and may miss certain types of leaks, particularly those with low permeability or microscopic tears.
  • Environmental concerns: The disposal of the dye solution used in the testing process can raise environmental concerns.

How Modern CCI Testing Methods Detect Issues that Blue Dye Might Miss?

Modern CCI testing methods offer significant advantages over traditional techniques like blue dye testing by providing sensitive, quantitative, non-destructive, and versatile approaches to assessing container closure integrity. These advancements enhance the reliability and effectiveness by ensuring product quality and patient safety.

MicroCurrent HVLD Technology

MicroCurrent HVLD is a non-destructive technology for Container Closure Integrity Testing (CCIT) used to assess the integrity of parenteral product packaging. This approach employs quantitative electrical conductivity measurements inherent to HVLD technology, which relies on the fundamental principle of electrical current. During testing, the container is positioned horizontally on a rotating stage. As the container rotates, one side receives a high voltage, while a ground probe is connected to the opposite side. If the package remains intact without leaks, the two container surfaces (high voltage and ground) exhibit complete electrical resistance, resulting in minimal current flow through the vial. However, if there is a micro-leak or crack in the container walls, the electrical resistance is compromised, allowing current to pass through. MicroCurrent HVLD finds application in testing various types of pharmaceutical packaging, including pre-filled syringes, ampoules, drug product cartridges, liquid-filled vials, and Blow-Fill-Seal (BFS) containers.

Vacuum Decay Technology

Vacuum Decay is a non-destructive approach to assessing container closure integrity, focusing the detection of package integrity and leak paths. The test procedure is simple, evaluating container integrity based on critical physical attributes. This technique has proven to be a non-destructive alternative to traditional water bath leak testing. In this method, packages are placed within an evacuation test chamber that utilizes an external vacuum source. The test continuously monitors vacuum levels to identify any deviations from a predefined target vacuum level. If a package is defective, it allows air to escape into the test chamber. Conversely, intact packages maintain a stable vacuum level within the chamber. Over time, Vacuum Decay technology has established itself as one of the most effective and sensitive solutions for vacuum-based leak detection.

Helium Leak Detection Technology

Helium leak detection technology has revolutionized Container Closure Integrity Testing (CCIT) by offering extremely sensitive and accurate detection of leaks. This method involves using helium gas to identify leaks in sealed or closed systems, measuring its concentration as it escapes through any leaks present. Helium leak testing finds diverse applications across various packaging formats, such as pre-filled syringes, vials, cold form blister packs, foil pouches, and others. This technology excels at precisely evaluating the integrity of specific components within primary container closure systems, making it highly suitable for ensuring the integrity of pharmaceutical products. Helium gas is uniquely suited as a tracer for leak detection due to its exceptional properties. Manufacturers leverage these properties to conduct thorough testing that can pinpoint even minute leaks, thereby enhancing quality control and product safety.

Innovations in Container Closure Integrity (CCI) testing have propelled the field beyond traditional methods like blue dye testing, ushering in a new era of enhanced precision and reliability. Technologies such as MicroCurrent HVLD, Vacuum Decay, and Helium leak detection have revolutionized how pharmaceutical packaging integrity is assessed, offering sensitive, non-destructive, and comprehensive approaches.

With ongoing developments in analytical capabilities and testing methodologies, the landscape of CCI testing is poised for further advancements, driving towards greater efficiency, accuracy, and compliance. By embracing these innovations, pharmaceutical manufacturers can confidently navigate the complexities of packaging integrity, setting new benchmarks for quality assurance in the healthcare sector.

Readmore...
container closure integrity, container closure integrity testing, helium leak testing
274
05
Aug 2024

Applications for Airborne Ultrasound Technology

Applications for Airborne Ultrasound Technology

Airborne Ultrasound technology is a seal integrity test method for analyzing seal quality, offering non-destructive inspection of seals for potential defects. It adheres to ASTM Test Method F3004 and is recognized by the FDA as a standard for seal quality testing. Primarily utilized for pouches and flexible packages, this technology provides comprehensive analyses of seal quality across various materials such as Tyvek, paper, foil, film, aluminum, plastic, and poly.

In this technology, ultrasound waves pass through the package seal, generating reflections of sound waves. The presence of a leak or defect reduces or eliminates the signal strength. These fluctuations are meticulously monitored to pinpoint any leaks. The inability to detect non-leak defects is a common challenge many leak test methodologies face. However, Airborne Ultrasound technology empowers users to detect diverse types of seal defects, whether visible or invisible, leaking or non-leaking, process-related or random.

By employing Airborne Ultrasound technology, industries can ensure thorough seal quality assessments, enhancing product safety and reliability.

Industrial Applications:

Pharmaceutical: Airborne ultrasound technology represents a crucial advancement in the pharmaceutical industry, offering versatile and effective solutions for quality assurance and safety throughout the manufacturing and packaging processes. By enabling precise seal quality inspection, and quality control during manufacturing, Airborne Ultrasound technology helps pharmaceutical companies maintain compliance with regulatory standards and ensure the integrity of their products. The non-destructive nature, sensitivity, and versatility of Airborne ultrasound technology makes it an indispensable tool for pharmaceutical and medical device manufacturers striving to deliver safe and effective medications to patients worldwide. As the industry continues to evolve, the application of Airborne ultrasound technology will remain instrumental in upholding the highest standards of product quality and patient safety.

Medical Device: In the Class III medical device industry, where products carry the highest risk and require the most stringent regulatory oversight, Airborne ultrasound technology emerges as an indispensable asset. This technology, leveraging high-frequency sound waves, plays a pivotal role in ensuring the uncompromised integrity, reliability, and safety of these critical devices. From implantable devices to life-sustaining equipment, the applications of Airborne ultrasound are extensive and indispensable.

In this industry, where precision and accuracy are paramount, Airborne Ultrasound technology offers unparalleled non-destructive testing capabilities. By detecting even the minutest defects, leaks, or structural inconsistencies, it empowers manufacturers to uphold the highest standards of quality control and regulatory compliance. The versatility of Airborne Ultrasound technology is particularly advantageous in the Class III medical device sector. Whether inspecting complex device components, verifying the integrity of seals in sterile packaging, or monitoring critical manufacturing processes, its applications are wide-ranging and vital.

Airborne Ultrasound Technology Benefits

  • Deterministic inspection method producing quantitative results
  • Non-destructive, non-subjective, no sample preparation
  • Can be integrated for 100% online defect detection of the final pouch seal
  • Repeatable and reliable results
  • Eliminates subjective manual vision inspection methods
  • Characterizes overall quality and uniformity of the seal
  • Economical cost-effective solution.

In conclusion, Airborne Ultrasound technology represents a significant advancement in seal quality inspection, promising improved reliability, efficiency, and confidence in product integrity. Its adoption heralds a new era of quality assurance, ensuring the highest standards of safety and satisfaction for consumers worldwide.

Readmore...
airborne ultrasound, seal quality testing, seal quality inspection
193
01
Aug 2024

How VeriPac Flex Systems Enhance Quality Assurance in Dry-Filled Pouch Packaging?

How VeriPac Flex Systems Enhance Quality Assurance in Dry-Filled Pouch Packaging?

In the pharmaceutical industry, ensuring the integrity of packaging is crucial for maintaining the safety, efficacy, and quality of products. Dry-filled pouch packaging, commonly used for its convenience and cost-effectiveness, requires stringent quality assurance measures to protect the contents from contamination, moisture, and physical damage. One advanced solution that has significantly enhanced quality assurance in this area is the VeriPac Flex System. This system employs advanced technology to provide non-destructive package integrity testing, ensuring that each pouch meets the highest standards of quality and reliability.

Importance of Packaging Integrity

In today’s increasingly complex and globalized supply chains, maintaining packaging integrity has become more challenging and essential than ever. The rise of e-commerce and the demand for longer shelf lives necessitate advanced packaging solutions and rigorous testing protocols. Consequently, the importance of packaging integrity extends beyond mere containment—it plays a vital role in ensuring consumer satisfaction, fostering brand loyalty, and driving industry innovation. This is especially crucial in sectors such as pharmaceuticals, and food and nutrition, where the packaging serves not only as a container but also as a barrier against contamination, degradation, and tampering.

Effective packaging integrity assures products remain safe, effective, and of high quality throughout their shelf life, thereby safeguarding consumer health and maintaining trust. Moreover, it helps in complying with stringent regulatory standards, reducing economic losses due to product recalls and waste, and supporting sustainability efforts by minimizing environmental impact.

Dry-Filled Pouch Package Inspection Using VeriPac Flex

VeriPac FLEX Systems are versatile inspection solutions designed for pouches and flexible packaging. They provide a clear PASS or FAIL result along with quantitative data on leak rates. Renowned for their exceptional sensitivity, reliability, and ease of use, these systems work seamlessly across various package formats and sizes without needing adjustments or tooling changes. With multiple configurations available for both the inspection instrument and test chamber capacity, VeriPac FLEX Systems meets a wide range of package specifications and sensitivity needs. They accommodate everything from small sachets and stick packs to large bulk pouches and bags.

Utilizing the ASTM method for vacuum decay leak testing (F2338) and endorsed by the FDA, VeriPac FLEX Systems conforms to recognized standards for package integrity testing. By replacing subjective and wasteful destructive testing methods, they offer a more efficient and cost-effective alternative. The vacuum decay leak testing technology employed by VeriPac systems delivers rapid returns on investment compared to traditional destructive methods like water baths or blue dye tests. These systems reliably detect critical packaging failures while providing valuable insights into the packaging process. VeriPac FLEX technology has also been fully automated for production line inspection.

Why VeriPac Flex stands out for dry-filled pouches?

  • Deterministic, quantitative test method
  • Cost-effective with rapid return on investment
  • Non-destructive, non-subjective, no sample preparation
  • Supports sustainable packaging and zero-waste initiatives
  • Test multiple packages in a single test cycle
  • ASTM test method and FDA standard
  • USP < 1207> compliant

In conclusion, the VeriPac Flex System significantly enhances quality assurance in dry-filled pouch packaging through its state-of-the-art non-destructive testing technology. This system leverages advanced vacuum decay methods to detect leaks and ensure the integrity of packaging, offering numerous advantages for pharmaceutical companies. Integrating the VeriPac Flex System into the quality assurance framework ensures that pharmaceutical companies can maintain high standards of product integrity and safety. This not only safeguards patient health but also strengthens regulatory compliance and operational efficiency, ultimately enhancing the company’s market position and consumer trust.

Readmore...
vacuum decay leak testing, quality assurance, non-destructive testing
231

Popular Blogs

Tags

CCIT for Pharmaceutical Package Integrity

Jul 23, 2021   |   3078

Container Closure Integrity Testing of pharmaceutical packaging ensures that the products remain intact throughout its shelf life or until it reaches the end user.

Techniques Involved in Leak Testing Vials

Sep 06, 2022   |   2831

Most common methods for leak testing vials include MicroCurrent HVLD Technology, Helium Leak Testing and Vacuum Decay Technology.

Why is Seal Integrity Testing of Medical Device Packaging Important

Jul 29, 2021   |   2760

For sterile medical devices, seal integrity testing ensures product efficacy, shelf-life stability, and microbial sterility. Airborne Ultrasound technology is a non-destructive Container Closure Integrity test method, capable of examining seal quality for defects.

A Guide to MicroCurrent HVLD Technology

Aug 05, 2021   |   2689

In the case of parenteral drug product containers, HVLD technology is ideal for CCI testing in cases where packaging is less conductive than the liquid within.

Everything You Need to Know About Vacuum Decay Technology

Sep 09, 2022   |   2624

Vacuum Decay technology is the ideal non-destructive solution for container closure integrity determination for many package formats.
Popup